Modeling Time-Dependent Association in Longitudinal Data: A Lag as Moderator Approach

被引:51
|
作者
Selig, James P. [1 ]
Preacher, Kristopher J. [2 ]
Little, Todd D. [3 ]
机构
[1] Univ New Mexico, Albuquerque, NM 87131 USA
[2] Vanderbilt Univ, Nashville, TN USA
[3] Univ Kansas, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
CROSS-SECTIONAL ANALYSES; REGRESSION; MEDIATION; DESIGN; RETEST; BIAS;
D O I
10.1080/00273171.2012.715557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a straightforward, yet novel, approach to examine time-dependent association between variables. The approach relies on a measurement-lag research design in conjunction with statistical interaction models. We base arguments in favor of this approach on the potential for better understanding the associations between variables by describing how the association changes with time. We introduce a number of different functional forms for describing these lag-moderated associations, each with a different substantive meaning. Finally, we use empirical data to demonstrate methods for exploring functional forms and model fitting based on this approach.
引用
收藏
页码:697 / 716
页数:20
相关论文
共 50 条
  • [31] Data-driven reduced order modeling for time-dependent problems
    Guo, Mengwu
    Hesthaven, Jan S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 : 75 - 99
  • [33] MODELING THE TIME-DEPENDENT BEHAVIOR OF ICE
    SZYSZKOWSKI, W
    GLOCKNER, PG
    COLD REGIONS SCIENCE AND TECHNOLOGY, 1985, 11 (01) : 3 - 21
  • [34] Modeling Ontologies for Time-Dependent Applications
    Giumale, Cristian
    Negreanu, Lorina
    Muraru, Mihnea
    Popovici, Matei
    12TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2010), 2011, : 202 - 208
  • [35] Towards a Robust Approach to Analyze Time-Dependent Data in Software Engineering
    Saarimaki, Nyyti
    Moreschini, Sergio
    Lomio, Francesco
    Penaloza, Rafael
    Lenarduzzi, Valentina
    2022 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER 2022), 2022, : 36 - 40
  • [36] GMM logistic regression models for longitudinal data with time-dependent covariates and extended classifications
    Lalonde, Trent L.
    Wilson, Jeffrey R.
    Yin, Jianqiong
    STATISTICS IN MEDICINE, 2014, 33 (27) : 4756 - 4769
  • [37] Regression analysis of longitudinal binary data with time-dependent environmental covariates: bias and efficiency
    Schildcrout, JS
    Heagerty, PJ
    BIOSTATISTICS, 2005, 6 (04) : 633 - 652
  • [38] Using modified approaches on marginal regression analysis of longitudinal data with time-dependent covariates
    Zhou, Yi
    Lefante, John
    Rice, Janet
    Chen, Shande
    STATISTICS IN MEDICINE, 2014, 33 (19) : 3354 - 3364
  • [39] The impact of missing data on analyses of a time-dependent exposure in a longitudinal cohort: A simulation study
    Karahalios A.
    Baglietto L.
    Lee K.J.
    English D.R.
    Carlin J.B.
    Simpson J.A.
    Emerging Themes in Epidemiology, 10 (1):
  • [40] Instrumental Variable Estimation for Causal Inference in Longitudinal Data with Time-Dependent Latent Confounders
    Cheng, Debo
    Xu, Ziqi
    Li, Jiuyong
    Liu, Lin
    Liu, Jixue
    Gao, Wentao
    Le, Thuc Duy
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 10, 2024, : 11480 - 11488