MCMC for Generalized Linear Mixed Models with glmmBUGS

被引:0
|
作者
Brown, Patrick [1 ,2 ]
Zhou, Lutong [2 ]
机构
[1] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON M5S 1A1, Canada
[2] Canc Care Ontario, Toronto, ON, Canada
来源
R JOURNAL | 2010年 / 2卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The glmmBUGS package is a bridging tool between Generalized Linear Mixed Models (GLMMs) in R and the BUGS language. It provides a simple way of performing Bayesian inference using Markov Chain Monte Carlo (MCMC) methods, taking a model formula and data frame in R and writing a BUGS model file, data file, and initial values files. Functions are provided to reformat and summarize the BUGS results. A key aim of the package is to provide files and objects that can be modified prior to calling BUGS, giving users a platform for customizing and extending the models to accommodate a wide variety of analyses.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 50 条
  • [41] GENERALIZED FIDUCIAL INFERENCE FOR NORMAL LINEAR MIXED MODELS
    Cisewski, Jessi
    Hannig, Jan
    ANNALS OF STATISTICS, 2012, 40 (04): : 2102 - 2127
  • [42] Misspecification of the covariance structure in generalized linear mixed models
    Chavance, M.
    Escolano, S.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (02) : 630 - 643
  • [43] Parsimonious Classification Via Generalized Linear Mixed Models
    G. Kauermann
    J. T. Ormerod
    M. P. Wand
    Journal of Classification, 2010, 27 : 89 - 110
  • [44] Conditional likelihood inference in generalized linear mixed models
    Sartori, N
    Severini, TA
    STATISTICA SINICA, 2004, 14 (02) : 349 - 360
  • [45] Laplace importance sampling for generalized linear mixed models
    Kuk, AYC
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 63 (02) : 143 - 158
  • [46] Generalized linear mixed models: a review and some extensions
    Dean, C. B.
    Nielsen, Jason D.
    LIFETIME DATA ANALYSIS, 2007, 13 (04) : 497 - 512
  • [47] Estimation of group means in generalized linear mixed models
    Duan, Jiexin
    Levine, Michael
    Luo, Junxiang
    Qu, Yongming
    PHARMACEUTICAL STATISTICS, 2020, 19 (05) : 646 - 661
  • [48] General design Bayesian generalized linear mixed models
    Zhao, Y.
    Staudenmayer, J.
    Coull, B. A.
    Wand, M. P.
    STATISTICAL SCIENCE, 2006, 21 (01) : 35 - 51
  • [49] Efficient Shrinkage for Generalized Linear Mixed Models Under Linear Restrictions
    Thomson T.
    Hossain S.
    Sankhya A, 2018, 80 (2): : 385 - 410
  • [50] Testing polynomial covariate effects in linear and generalized linear mixed models
    Huang, Mingyan
    Zhang, Daowen
    STATISTICS SURVEYS, 2008, 2 : 154 - 169