Refractive index and geometrical structure measurement of a core-doped photonic crystal fiber

被引:0
|
作者
Youk, Y. [1 ]
Kim, S. [1 ]
Oh, K. [1 ]
Kobelke, J. [2 ]
Schuster, K. [2 ]
Kirchhof, J. [2 ]
Kim, D. Y. [1 ]
机构
[1] Gwangju Inst Sci & Technol, Dept Informat & Commun, 1 Oryong Dong, Kwangju 500712, South Korea
[2] Inst Phys Hochtechnol, D-07745 Jena, Germany
来源
关键词
photonic crystal fiber; confocal microscopy; refractive index; fiber characterization;
D O I
10.1117/12.645723
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Using confocal scanning optical microscopy, we carried out a direct refractive index profiling technique of complex and non-symmetric structured optical fibers. Several improvements on the earlier design are proposed; a light emitting diode (LED) at 658 nm wavelength instead of a laser diode (LD) or He-Ne laser is used as a light source for better index precision, and a simple longitudinal linear scanning and a curve fitting techniques are adapted instead of a servo control for maintaining an optical confocal arrangement. Also, we have developed a novel technique to remove measurement noise generated by pinhole diffraction. This improved, straightforward, and robust method can be used to determine the refractive index profile of optical fibers by determining the reflectivity of a sample's surface. This technique is easy and repeatable, and we demonstrated the refractive index measurement of a core-doped photonic crystal fiber for the first time.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing
    Paul, Alok Kumar
    Habib, Md Samiul
    Nguyen Hoang Hai
    Razzak, S. M. Abdur
    OPTICS COMMUNICATIONS, 2020, 464
  • [42] Independent measurement of refractive index and temperature using D-gapped dual-channel structure in a photonic crystal fiber
    Mingjun Tian
    Jin Li
    Fanli Meng
    Optical and Quantum Electronics, 2023, 55
  • [43] Independent measurement of refractive index and temperature using D-gapped dual-channel structure in a photonic crystal fiber
    Tian, Mingjun
    Li, Jin
    Meng, Fanli
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)
  • [44] Terahertz spectrum petrochemical sensing: a photonic crystal fiber refractive index hybrid structure approach
    Ferdous, A. H. M. Iftekharul
    Noor, Khalid Sifulla
    Balamurugan, Kavitha
    Ramkumar, Govindaraj
    Kumar, Chandran Ramesh
    Mohan, Salem Balamurugan
    Xavier, Benisha Maria
    Hossain, Md. Shamim
    Noor, Sheikh Zannat E.
    Sathi, Benjir Newaz
    Rashed, Ahmed Nabih Zaki
    Hossain, Amzad
    JOURNAL OF OPTICS-INDIA, 2024, 53 (04): : 3797 - 3809
  • [45] Flat Photonic Crystal Fiber Plasmonic Sensor for Simultaneous Measurement of Temperature and Refractive Index with High Sensitivity
    An, Wei
    Li, Chao
    Wang, Dong
    Chen, Wenya
    Guo, Shijing
    Gao, Song
    Zhang, Chunwei
    SENSORS, 2022, 22 (23)
  • [46] Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer
    Deng, Ming
    Tang, Chang-Ping
    Zhu, Tao
    Rao, Yun-Jiang
    Xu, Lai-Cai
    Han, Meng
    APPLIED OPTICS, 2010, 49 (09) : 1593 - 1598
  • [47] All-fiber Mach-Zehnder interferometer using a tapered photonic crystal fiber for refractive index measurement
    Zhao, Yong
    Wu, Di
    Wang, Qi
    2014 IEEE SENSORS, 2014,
  • [48] Optofluidic Photonic Crystal Fiber Coupler for Measuring the Refractive Index of Liquids
    Wei, Heming
    Zhu, Yinian
    Krishnaswamy, Sridhar
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (01) : 103 - 106
  • [49] Photonic Crystal Fiber based Modal Interferometer for Refractive Index Sensing
    Deng, Ming
    Sun, Xiaokang
    Huang, Wei
    Wei, Huifeng
    Li, Jiang
    23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [50] Photonic crystal cavity on optical fiber facet for refractive index sensing
    Wang, Bowen
    Siahaan, Timothy
    Dundar, Mehmet A.
    Notzel, Richard
    van der Hoek, Marinus J.
    He, Sailing
    van der Heijden, Rob W.
    OPTICS LETTERS, 2012, 37 (05) : 833 - 835