Semi-parametric inference in a bivariate (multivariate) mixture model

被引:0
|
作者
Leung, DHY
Qin, J
机构
[1] Singapore Management Univ, Sch Econ & Social Sci, Singapore 178903, Singapore
[2] NIAID, Biostat Res Branch, NIH, Bethesda, MD 20892 USA
关键词
empirical likelihood; multivariate mixture; semi-parametric; Shannon's mutual information;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider estimation in a bivariate mixture model in which the component distributions can be decomposed into identical distributions. Previous approaches to estimation involve parametrizing the distributions. In this paper, we use a semi-parametric approach. The method is based on the exponential tilt model of Anderson (1979), where the log ratio of probability (density) functions from the bivariate components is linear in the observations. The proposed model does not require training samples, i.e., data with confirmed component membership. We show that in bivariate mixture models, parameters are identifiable. This is in contrast to previous works, where parameters are identifiable if and only if each univariate marginal model is identifiable (Teicher (1967)).
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条
  • [21] Fitting a semi-parametric mixture model for competing risks in survival data
    Escarela, Gabriel
    Bowater, Russell J.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (02) : 277 - 293
  • [22] Bivariate Semi-parametric Singular Family of Distributions and its Applications
    Kundu, Debasis
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2022, 84 (02): : 846 - 872
  • [23] Bivariate Semi-parametric Singular Family of Distributions and its Applications
    Debasis Kundu
    Sankhya B, 2022, 84 : 846 - 872
  • [24] Empirical likelihood inference for semi-parametric estimating equations
    Wang ShanShan
    Cui HengJian
    Li RunZe
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (06) : 1247 - 1262
  • [25] SEMI-PARAMETRIC INFERENCE FOR COPULA MODELS FOR TRUNCATED DATA
    Emura, Takeshi
    Wang, Weijing
    Hung, Hui-Nien
    STATISTICA SINICA, 2011, 21 (01) : 349 - 367
  • [26] Semi-parametric inference for semi-varying coefficient panel data model with individual effects
    Hu, Xuemei
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 262 - 281
  • [27] A semi-parametric generalization of the Cox proportional hazards regression model: Inference and applications
    Devarajan, Karthik
    Ebrahimi, Nader
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 667 - 676
  • [28] Empirical likelihood inference for semi-parametric estimating equations
    ShanShan Wang
    HengJian Cui
    RunZe Li
    Science China Mathematics, 2013, 56 : 1247 - 1262
  • [29] Empirical likelihood inference for semi-parametric estimating equations
    WANG ShanShan
    CUI HengJian
    LI RunZe
    Science China(Mathematics), 2013, 56 (06) : 1243 - 1258
  • [30] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    AghaKouchak, Amir
    Nasrollahi, Nasrin
    WATER RESOURCES MANAGEMENT, 2010, 24 (06) : 1229 - 1249