Semi-parametric inference in a bivariate (multivariate) mixture model

被引:0
|
作者
Leung, DHY
Qin, J
机构
[1] Singapore Management Univ, Sch Econ & Social Sci, Singapore 178903, Singapore
[2] NIAID, Biostat Res Branch, NIH, Bethesda, MD 20892 USA
关键词
empirical likelihood; multivariate mixture; semi-parametric; Shannon's mutual information;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider estimation in a bivariate mixture model in which the component distributions can be decomposed into identical distributions. Previous approaches to estimation involve parametrizing the distributions. In this paper, we use a semi-parametric approach. The method is based on the exponential tilt model of Anderson (1979), where the log ratio of probability (density) functions from the bivariate components is linear in the observations. The proposed model does not require training samples, i.e., data with confirmed component membership. We show that in bivariate mixture models, parameters are identifiable. This is in contrast to previous works, where parameters are identifiable if and only if each univariate marginal model is identifiable (Teicher (1967)).
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条
  • [1] Bivariate Semi-Parametric Model: Bayesian Inference
    Debashis Samanta
    Debasis Kundu
    Methodology and Computing in Applied Probability, 2023, 25
  • [2] Bivariate Semi-Parametric Model: Bayesian Inference
    Samanta, Debashis
    Kundu, Debasis
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (04)
  • [3] Inference for bivariate extremes via a semi-parametric angular-radial model
    Murphy-Barltrop, Callum John Rowlandson
    Mackay, Ed
    Jonathan, Philip
    EXTREMES, 2024,
  • [4] Multivariate binormal mixtures for semi-parametric inference on ROC curves
    Sarat C. Dass
    Seong W. Kim
    Journal of the Korean Statistical Society, 2011, 40 : 397 - 410
  • [5] Multivariate binormal mixtures for semi-parametric inference on ROC curves
    Dass, Sarat C.
    Kim, Seong W.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (04) : 397 - 410
  • [6] A Bayesian semi-parametric bivariate failure time model
    Nieto-Barajas, Luis E.
    Walker, Stephen G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 6102 - 6113
  • [7] A semi-parametric mixture model in fertility studies
    Zhou, HB
    Weinberg, CR
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 75 (02) : 453 - 462
  • [8] A BAYESIAN SEMI-PARAMETRIC MIXTURE MODEL FOR BIVARIATE EXTREME VALUE ANALYSIS WITH APPLICATION TO PRECIPITATION FORECASTING
    Tian, Yuan
    Reich, Brian J.
    STATISTICA SINICA, 2021, 31 (03) : 1619 - 1641
  • [9] Semi-parametric estimation for conditional independence multivariate finite mixture models
    Chauveau, Didier
    Hunter, David R.
    Levine, Michael
    STATISTICS SURVEYS, 2015, 9 : 1 - 31
  • [10] Absolutely Continuous Semi-parametric Bivariate Distributions
    Samanta, Debashis
    Kundu, Debasis
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2025,