On conditional variance estimation in nonparametric regression

被引:4
|
作者
Chib, Siddhartha [1 ]
Greenberg, Edward [2 ]
机构
[1] Washington Univ, John M Olin Sch Business, St Louis, MO 63130 USA
[2] Washington Univ, Dept Econ, St Louis, MO 63130 USA
关键词
Heteroscedastic errors; Cubic splines; Conditional variance functions; Nonparametric regression; Semiparametric regression; STOCHASTIC VOLATILITY; LIKELIHOOD INFERENCE; MODELS;
D O I
10.1007/s11222-011-9307-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we consider a nonparametric regression model in which the conditional variance function is assumed to vary smoothly with the predictor. We offer an easily implemented and fully Bayesian approach that involves the Markov chain Monte Carlo sampling of standard distributions. This method is based on a technique utilized by Kim, Shephard, and Chib (in Rev. Econ. Stud. 65:361-393, 1998) for the stochastic volatility model. Although the (parametric or nonparametric) heteroscedastic regression and stochastic volatility models are quite different, they share the same structure as far as the estimation of the conditional variance function is concerned, a point that has been previously overlooked. Our method can be employed in the frequentist context and in Bayesian models more general than those considered in this paper. Illustrations of the method are provided.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 50 条
  • [11] Conditional variance estimation in heteroscedastic regression models
    Chen, W-Hung
    Cheng, Ming-Yen
    Peng, Liang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 236 - 245
  • [12] Effect of mean on variance function estimation in nonparametric regression
    Wang, Lie
    Brown, Lawrence D.
    Cai, T. Tony
    Levine, Michael
    ANNALS OF STATISTICS, 2008, 36 (02): : 646 - 664
  • [13] ADAPTIVE VARIANCE FUNCTION ESTIMATION IN HETEROSCEDASTIC NONPARAMETRIC REGRESSION
    Cai, T. Tony
    Wang, Lie
    ANNALS OF STATISTICS, 2008, 36 (05): : 2025 - 2054
  • [14] Estimation and inference for error variance in bivariate nonparametric regression
    Bock, M.
    Bowman, A. W.
    Ismail, B.
    STATISTICS AND COMPUTING, 2007, 17 (01) : 39 - 47
  • [15] OPTIMAL ESTIMATION OF VARIANCE IN NONPARAMETRIC REGRESSION WITH RANDOM DESIGN
    Shen, Yandi
    Gao, Chao
    Witten, Daniela
    Han, Fang
    ANNALS OF STATISTICS, 2020, 48 (06): : 3589 - 3618
  • [16] Estimation and inference for error variance in bivariate nonparametric regression
    M. Bock
    A. W. Bowman
    B. Ismail
    Statistics and Computing, 2007, 17 : 39 - 47
  • [17] Error variance function estimation in nonparametric regression models
    Alharbi, Yousef F.
    Patili, Prakash N.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (05) : 1479 - 1491
  • [18] Nonparametric Estimation of the Conditional Distribution at Regression Boundary Points
    Das, Srinjoy
    Politis, Dimitris N.
    AMERICAN STATISTICIAN, 2020, 74 (03): : 233 - 242
  • [19] Conditional variance estimation via nonparametric generalized additive models
    Kyusang Yu
    Journal of the Korean Statistical Society, 2019, 48 : 287 - 296
  • [20] Conditional variance estimation via nonparametric generalized additive models
    Yu, Kyusang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (02) : 287 - 296