BLIND SEPARATION OF EXCAVATOR NOISE BASED ON INDEPENDENT COMPONENT ANALYSIS

被引:0
|
作者
Liao, Lida [1 ]
He, Qinghua [1 ]
Zhang, Guohao [1 ]
Zhang, Daqin
Wang, Zhongjie
机构
[1] Cent South Univ, Dept Mech & Elect Engn, Changsha 410083, Peoples R China
关键词
excavator; independent component analysis (ICA); modal analysis; convolution mixture; ALGORITHMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to identify excavator noise sources under non-laboratory environment, noise signals in frequency domain were separated based on Independent Component Analysis (ICA). Firstly, experiments were carried out in a manufacture plant and excavator noise signals were acquired, which had been interfered with by drastic echo and background noise. Secondly, signals in time domain were transformed into frequency domain via Fourier transform (FT), so that convolution mixtures were turned into linear mixtures. Thirdly, these linear mixtures were separated into principal components by Fast fixed-point independent component analysis (FICA). Finally, a comparison of pricipal components and the result of Ansys modal analysis was conducted. Research shows that seperation of excavator noise signals based on ICA in frequency domain is effective, and noise sources can be identified properly by comparing basic frequencies of independent components with the result of modal analysis.
引用
收藏
页码:222 / 225
页数:4
相关论文
共 50 条
  • [41] A Unifying View on Blind Source Separation of Convolutive Mixtures Based on Independent Component Analysis
    Brendel, Andreas
    Haubner, Thomas
    Kellermann, Walter
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 816 - 830
  • [42] Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network
    Z. S. Wang
    J. Y. Cheung
    J. D. Z. Chen
    Medical & Biological Engineering & Computing, 1999, 37 : 80 - 86
  • [43] Blind separation of noisy speech mixtures based on wavelet transform and independent component analysis
    School of Information Science and Engineering, Shandong University, Jinan 250100, China
    Dianzi Yu Xinxi Xuebao, 2006, 9 (1565-1568):
  • [44] Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network
    Wang, ZS
    Cheung, JY
    Chen, JDZ
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1999, 37 (01) : 80 - 86
  • [45] Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network
    Lynn Inst. for Healthcare Research, 5300 N. Independence Ave., Oklahoma City, OK 73112, United States
    不详
    Med Biol Eng Comput, 1 (80-86):
  • [46] Blind noisy image separation based on a new robust independent component analysis network
    Department of Computer Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
    不详
    不详
    Chin. Opt. Lett., 2006, 10 (573-575):
  • [47] KERNEL-BASED NONLINEAR INDEPENDENT COMPONENT ANALYSIS FOR UNDERDETERMINED BLIND SOURCE SEPARATION
    Miyabe, Shigeki
    Juang, Biing-Hwang
    Saruwatari, Hiroshi
    Shikano, Kiyohiro
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1641 - +
  • [48] Dynamic blind separation of mechanical fault sources based on canonical variate analysis and independent component analysis
    Li, Zhinong
    Zhang, Fen
    Xiao, Yaoxian
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2015, 51 (12): : 24 - 29
  • [49] Improved blind signal separation techniques via independent component analysis
    Zhao, Y. (jian123cn@sina.com), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [50] Blind source separation of chaotic laser signals by independent component analysis
    Kuraya, Masahiko
    Uchida, Atsushi
    Yoshimori, Shigeru
    Umeno, Ken
    OPTICS EXPRESS, 2008, 16 (02) : 725 - 730