An experimental platform for pulsed-power driven magnetic reconnection

被引:21
|
作者
Hare, J. D. [1 ]
Suttle, L. G. [1 ]
Lebedev, S. V. [1 ]
Loureiro, N. F. [2 ]
Ciardi, A. [3 ]
Chittenden, J. P. [1 ]
Clayson, T. [1 ]
Eardley, S. J. [1 ]
Garcia, C. [1 ]
Halliday, J. W. D. [1 ]
Robinson, T. [1 ]
Smith, R. A. [1 ]
Stuart, N. [1 ]
Suzuki-Vidal, F. [1 ]
Tubman, E. R. [1 ]
机构
[1] Imperial Coll, Blackett Lab, London SW7 2AZ, England
[2] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] UPMC Univ Paris 06, Sorbonne Univ, PSL Res Univ, Observ Paris,CNRS,UMR 8112,LERMA, F-75005 Paris, France
基金
英国工程与自然科学研究理事会;
关键词
ENERGY;
D O I
10.1063/1.5016280
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on the exploding wire arrays driven in parallel [Suttle et al., Phys. Rev. Lett. 116, 225001 (2016)]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow the evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer that forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes and asymmetric reconnection. (C) 2018 Author(s).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] ELECTRICAL INTERFERENCE IN PULSED-POWER TECHNOLOGY
    THORNTON, E
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1979, 126 (05): : 426 - 432
  • [22] Coreless Fast Pulsed-Power Drivers
    Gourdain, P-A
    Evans, M.
    Efthimion, P.
    Ellis, R.
    Fox, W.
    Hasson, H. R.
    Ji, H.
    Shapovalov, R., V
    Young, J. R.
    West-Abdallah, I
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2021, 49 (07) : 2161 - 2165
  • [23] Pulsed-Power System for Leachate Treatment Applications
    Jang, Sung-Roc
    Ryoo, Hong-Je
    Ok, Seung-Bok
    JOURNAL OF POWER ELECTRONICS, 2011, 11 (04) : 612 - 619
  • [24] Genetic Optimization for Pulsed-Power System Configuration
    Glover, Steven F.
    White, Forest E.
    Reed, Kim W.
    Harden, Michael J.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2009, 37 (02) : 339 - 346
  • [25] GaN Transistors for Miniaturized Pulsed-Power Sources
    Nikoo, Mohammad Samizadeh
    Jafari, Armin
    Matioli, Elison
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (07) : 3241 - 3245
  • [26] SCREAMER: A Optimized Pulsed-Power CircuitAnalysis Tool
    Spielman, R. B.
    Gryazin, Y.
    2016 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE (IPMHVC), 2016, : 269 - 274
  • [27] ENVIRONMENTAL AND INDUSTRIAL APPLICATIONS OF PULSED-POWER SYSTEMS
    NEAU, EL
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1994, 22 (01) : 2 - 10
  • [28] OPERATION AND TECHNOLOGY OF HIGH PULSED-POWER GENERATORS
    EYL, P
    ROMARY, P
    ONDE ELECTRIQUE, 1995, 75 (03): : 64 - 71
  • [29] Pulsed-power treatment for physical water treatment
    Cho, YI
    Lane, J
    Kim, W
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2005, 32 (07) : 861 - 871
  • [30] MULTISTAGE PULSED-POWER ELECTRON-ACCELERATORS
    PRESTWICH, KR
    HASTI, DE
    MILLER, RB
    SHARPE, AW
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1983, 30 (04) : 3155 - 3158