Modeling of Retrial Queueing System GI/G/m/0/ /1/G by the Monte Carlo Method

被引:0
|
作者
Dyshliuk, O. N. [1 ]
Koba, E. V. [2 ]
Pustova, S. V. [3 ]
机构
[1] Natl Aviat Univ, Dept Comp Control Syst, Kiev, Ukraine
[2] Natl Acad Sci Ukraine, VM Glushkov Cybernet Inst, Kiev, Ukraine
[3] Natl Aviat Univ, Kiev, Ukraine
关键词
multichannel retrial queueing system; recurrent input flow; orbit of single capacity; distribution functions; intervals between moments of calls arrival; service and sojourn times of retrials; algorithm of statistical modeling; estimate of stationary probability of calls loss;
D O I
10.1615/JAutomatInfScien.v45.i10.20
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multichannel retrial queueing system GI/G/m/0/ /1/G (with recurrent input flow and orbit of single capacity) is under consideration. Distribution functions of intervals between moments of calls arrival to system, service and sojourn times of retrials have general form. We suggest algorithm of statistical modeling of such system in order to estimate stationary probability of calls loss. Numerical and graphical results are given.
引用
收藏
页码:5 / 13
页数:9
相关论文
共 50 条
  • [31] GI/G/1/∞ batch arrival queueing system with a single exponential vacation
    Kempa, Wojciech M.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 69 (01) : 81 - 97
  • [32] GI/G/1/∞ batch arrival queueing system with a single exponential vacation
    Wojciech M. Kempa
    Mathematical Methods of Operations Research, 2009, 69 : 81 - 97
  • [33] The queue length of GI/G/1 queueing system with server setup times
    Zhao, Qinggui
    Zhang, Xuan
    Kong, Xiangxing
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL IV, PROCEEDINGS, 2009, : 702 - 704
  • [34] M/M/1 Retrial Queueing System with Variable Service Rate
    M. S. Bratiichuk
    A. A. Chechelnitsky
    I. Ya. Usar
    Ukrainian Mathematical Journal, 2020, 72 : 403 - 415
  • [35] M/M/1 Retrial Queueing System with Variable Service Rate
    Bratiichuk, M. S.
    Chechelnitsky, A. A.
    Usar, I. Ya.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (03) : 403 - 415
  • [36] A PλM-policy for an M/G/1 queueing system
    Bae, J
    Kim, S
    Lee, EY
    APPLIED MATHEMATICAL MODELLING, 2002, 26 (09) : 929 - 939
  • [37] A recursive method for the N policy G/M/1 queueing system with finite capacity
    Ke, JC
    Wang, KH
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 142 (03) : 577 - 594
  • [38] ON THE BMAP1, BMAP2/PH/g, c RETRIAL QUEUEING SYSTEM
    Peng, Yi
    Wu, Jinbiao
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (06) : 3373 - 3391
  • [39] The M/G/1 retrial queue with retrial rate control policy
    Choi, Bong Dae
    Rhee, Kyung Hyune
    Park, Kwang Kyu
    Probability in the Engineering and Informational Sciences, 1993, 7 (01) : 29 - 46
  • [40] An M/G/1 Queueing System with Delay Server Vacations
    TANG Yinghui\ TANG Xiaowo (Department of Applied Math.
    Journal of Systems Science and Systems Engineering, 1998, (01) : 29 - 36