Hyperscaling for Oriented Percolation in Space-Time Dimensions

被引:0
|
作者
Sakai, Akira [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido, Japan
关键词
Oriented percolation; Critical behavior; Critical exponent; Hyperscaling; Box-crossing property; CRITICAL-BEHAVIOR; PHASE-TRANSITION; INEQUALITIES; SHARPNESS; LIMIT;
D O I
10.1007/s10955-018-2020-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider nearest-neighbor oriented percolation in space-time dimensions. Let be the critical exponents for the survival probability up to time t, the expected number of vertices at time t connected from the space-time origin, and the gyration radius of those vertices, respectively. We prove that the hyperscaling inequality , which holds for all and is a strict inequality above the upper-critical dimension 4, becomes an equality for , i.e., , provided existence of at least two among . The key to the proof is the recent result on the critical box-crossing property by Duminil-Copin et al. [6].
引用
收藏
页码:462 / 469
页数:8
相关论文
共 50 条
  • [41] CONFORM GROUP FOR SPACE-TIME IN 4 AND 5 DIMENSIONS
    SCHEURER, PB
    HELVETICA PHYSICA ACTA, 1972, 45 (01): : 35 - &
  • [42] Space-time wave packets localized in all dimensions
    Yessenov, Murat
    Free, Justin
    Chen, Zhaozhong
    Johnson, Eric G.
    Lavery, Martin P. J.
    Alonso, Miguel A.
    Abouraddy, Ayman F.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [43] On space-time supersymmetry and string duality in nine dimensions
    Abou-Zeid, M
    Nicolai, H
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 88 : 168 - 174
  • [44] Composite quarks and leptons in higher space-time dimensions
    Chaichian, M
    Chkareuli, JL
    Kobakhidze, A
    PHYSICAL REVIEW D, 2002, 66 (09)
  • [45] Relativistic bound states in three space-time dimensions in Minkowski space
    Gutierrez, C.
    Gigante, V.
    Frederico, T.
    Tomio, Lauro
    XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM, 2016, 1701
  • [46] TRIANGLE CONDITION FOR ORIENTED PERCOLATION IN HIGH DIMENSIONS
    NGUYEN, BG
    YANG, WS
    ANNALS OF PROBABILITY, 1993, 21 (04): : 1809 - 1844
  • [47] Space-time fractional diffusion equations in d-dimensions
    Lenzi, E. K.
    Evangelista, L. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (08)
  • [48] The 4D Space-Time Dimensions of Facial Perception
    Burt, Adelaide L.
    Crewther, David P.
    FRONTIERS IN PSYCHOLOGY, 2020, 11
  • [49] Diagonalizing the Hamiltonian of λφ4 theory in 2 space-time dimensions
    Christensen, Neil
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 : 167 - 188
  • [50] A space-time DPG method for the wave equation in multiple dimensions
    Gopalakrishnan, Jay
    Sepulveda, Paulina
    SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 : 117 - 139