Parallel refinement and coarsening of tetrahedral meshes

被引:5
|
作者
de Cougny, HL [1 ]
Shephard, MS [1 ]
机构
[1] Rensselaer Polytech Inst, Sci Computat Res Ctr, Troy, NY 12180 USA
关键词
refinement; coarsening; adaptive; parallel;
D O I
10.1002/(SICI)1097-0207(19991110)46:7<1101::AID-NME741>3.0.CO;2-E
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a parallel adaptation procedure (coarsening and refinement) for tetrahedral meshes in a distributed environment. Coarsening relies upon an edge collapsing tool. Refinement uses edge-based subdivision templates. Mesh optimization maintains the quality of the adapted meshes. Focus is given to the parallelization of the various components. Scalability requires repartitioning of the mesh before applying either coarsening or refinement. Relatively good speed-ups have been obtained for all phases of the proposed adaptation scheme. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:1101 / 1125
页数:25
相关论文
共 50 条
  • [31] A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes
    Alauzet, Frederic
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 299 : 116 - 142
  • [32] A Distributed-memory Parallel Approach for the Generation of Multibillion Element Tetrahedral Meshes
    Wang, Xiaoqing
    Jin, Xianlong
    2016 17TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2016, : 301 - 306
  • [33] An algorithm for coarsening unstructured meshes
    Bank, RE
    Xu, JC
    NUMERISCHE MATHEMATIK, 1996, 73 (01) : 1 - 36
  • [34] libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations
    Benjamin S. Kirk
    John W. Peterson
    Roy H. Stogner
    Graham F. Carey
    Engineering with Computers, 2006, 22 : 237 - 254
  • [35] SIMPLE ALGORITHM FOR ADAPTIVE REFINEMENT OF 3-DIMENSIONAL FINITE-ELEMENT TETRAHEDRAL MESHES
    MUTHUKRISHNAN, SN
    SHIAKOLAS, PS
    NAMBIAR, RV
    LAWRENCE, KL
    AIAA JOURNAL, 1995, 33 (05) : 928 - 932
  • [36] Octasection-based refinement of finite element approximations of tetrahedral meshes that guarantees shape quality
    Endres, L
    Krysl, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (01) : 69 - 82
  • [37] libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations
    Kirk, Benjamin S.
    Peterson, John W.
    Stogner, Roy H.
    Carey, Graham F.
    ENGINEERING WITH COMPUTERS, 2006, 22 (3-4) : 237 - 254
  • [38] Automatic merging of tetrahedral meshes
    Lo, S. H.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (11) : 1191 - 1215
  • [39] Tutte Embeddings of Tetrahedral Meshes
    Alexa, Marc
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025, 73 (01) : 197 - 207
  • [40] Simplification of nonconvex tetrahedral meshes
    Kraus, M
    Ertl, T
    HIERARCHICAL AND GEOMETRICAL METHODS IN SCIENTIFIC VISUALIZATION, 2003, : 185 - 195