Unscented Kalman filter and its nonlinear application for tracking a moving target

被引:21
|
作者
Zhang, Haitao [1 ]
Dai, Gang [1 ]
Sun, Junxin [1 ]
Zhao, Yujiao [1 ]
机构
[1] Guangzhou Haige Commun Grp Inc Co, Guangzhou 510663, Guangdong, Peoples R China
来源
OPTIK | 2013年 / 124卷 / 20期
关键词
The extended Kalman filter; Unscented transform; Unscented Kalman filter; SYSTEMS;
D O I
10.1016/j.ijleo.2013.03.013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 40 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the time scale of the updates. To overcome these limitations, this paper proposes the unscented Kalman filter (UKF). And the algorithms of the FEKF, SEKF and UKF are given. Furthermore, the state models and measurement models of a target are setup. For comparison purpose, the three algorithms is simulated for the target tracking, and the algorithm performance is analyzed and compared by the simulation results of FEKF, SEKF and UKF. Numerical results demonstrate that FEKF and UKF give almost identical results while the estimates of SEKF are clearly worse. The UKF is easier to implement, avoiding Jacobian and Hessian matrices computation. (C) 2013 Elsevier GmbH. All rights reserved.
引用
收藏
页码:4468 / 4471
页数:4
相关论文
共 50 条
  • [21] Application of Unscented Kalman Filter in Nonlinear Geodetic Problems
    Zhao, D.
    Cai, Z.
    Zhang, C.
    VI HOTINE-MARUSSI SYMPOSIUM ON THEORETICAL AND COMPUTATIONAL GEODESY, 2008, 132 : 252 - +
  • [22] Nonlinear radar tracking data filtering with unscented Kalman filter
    College of Automation, Harbin Engineering University, Harbin
    150100, China
    不详
    100876, China
    Lect. Notes Electr. Eng., 1876, (139-147):
  • [23] Adaptive Unscented Kalman Filter for Target Tracking in the Presence of Nonlinear Systems Involving Model Mismatches
    Zhou, Huan
    Huang, Hanqiao
    Zhao, Hui
    Zhao, Xin
    Yin, Xiang
    REMOTE SENSING, 2017, 9 (07):
  • [24] Progressive Kalman Filter and its Application in Magnetic Target Tracking
    Zhou Suihua
    Shan Shan
    Zhang Hongxin
    Dai Zhonghua
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 355 - 363
  • [25] Application of Square-Root Unscented Kalman Filter Smoothing Algorithm in Tracking Underwater Target
    Yao, Qiguo
    Su, Yuxiang
    Li, Lili
    PROCEEDINGS OF THE 2017 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTER (MACMC 2017), 2017, 150 : 526 - 531
  • [26] Unscented Kalman Filter Target Tracking Based on Elman Neural Network
    Qian FuCai
    Liu SiYu
    Xie Guo
    Liu YuShuang
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1442 - 1447
  • [27] An Adaptive Spatial Target Tracking Method Based on Unscented Kalman Filter
    Rong, Dandi
    Wang, Yi
    SENSORS, 2024, 24 (18)
  • [28] Adaptive Transformed Unscented Simplex Cubature Kalman Filter for Target Tracking
    Hashemi, Seyed Hamed
    Pariz, Naser
    IETE JOURNAL OF RESEARCH, 2023, 69 (06) : 3279 - 3287
  • [29] Ballistic target tracking based on the square root unscented Kalman filter
    Military Photoelectrcity Engineering T and R Section, Artillery Academy of PLA, Hefei 230031, China
    不详
    Guofang Keji Daxue Xuebao, 2007, 2 (97-100): : 97 - 100
  • [30] Waveform-agile Unscented Kalman Filter for Radar Target Tracking
    Wang, Bingbing
    Sun, Jinping
    Zhang, Xuwang
    Yang, Xiuwei
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 1153 - 1157