ANOTHER IMPROVEMENT OF MONTEL'S CRITERION

被引:5
|
作者
Xu, Yan [1 ]
机构
[1] Nanjing Normal Univ, Sch Math, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
关键词
Meromorphic function; Riemann-Hurwitz formula; normal family; Montel's criterion; MEROMORPHIC FUNCTIONS; NORMAL-FAMILIES; THEOREM;
D O I
10.2996/kmj/1364562719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a family of meromorphic functions defined in a domain D subset of C, let psi(1), psi(2) and psi(3) be three meromorphic functions such that psi(i)(z) not equivalent to psi(j)(z) (i not equal j) in D, one of which may be infinity identically, and let l(1), l(2) and l(3) be positive integers or infinity with 1/l(1) + 1/l(2) + 1/l(3) < 1. Suppose that, for each f is an element of f and z is an element of D, (1) all zeros of f - psi(i) have multiplicity at least l(i) for i = 1,2,3; (2) f (z(0)) not equal psi(i)(z(0)) if there exist i, j is an element of {1,2,3} (i not equal j) and z(0) is an element of D such that psi(i)(z(0)) = psi(j)(z(0)). Then f is normal in D. This improves and generalizes Montel's criterion.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 50 条
  • [11] On Montel's theorem in several variables
    Almira, J. M.
    Abu-Helaiel, Kh. F.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (01) : 1 - 10
  • [12] Improvement of Marty's Criterion and Its Application
    陈怀惠
    顾永兴
    Science China Mathematics, 1993, (06) : 674 - 681
  • [13] Improvement of marty's criterion and its application
    Huai-Hui, Chen
    Yong-Xing, Gu
    Science in China Series A: Mathematics, Physics, Astronomy and Technological Sciences, 1993, 36 (06):
  • [14] Some generalizations of Montel's theorem
    Cartwright, ML
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1935, 31 : 26 - 30
  • [15] On Montel's theorem and Yang's problem - Note
    Xu, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (02) : 743 - 751
  • [16] Finite Sample Improvement of Akaike's Information Criterion
    Saumard, Adrien
    Navarro, Fabien
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6328 - 6343
  • [17] Asplund space: Another criterion
    V. I. Rybakov
    Mathematical Notes, 2007, 82 : 104 - 109
  • [18] Asplund space: Another criterion
    Rybakov, V. I.
    MATHEMATICAL NOTES, 2007, 82 (1-2) : 104 - 109
  • [19] An Extension of Montel’s Three Omitted Values Theorem
    A. F. Beardon
    D. Minda
    Computational Methods and Function Theory, 2021, 21 : 61 - 72
  • [20] A non-Archimedean Montel's theorem
    Favre, Charles
    Kiwi, Jan
    Trucco, Eugenio
    COMPOSITIO MATHEMATICA, 2012, 148 (03) : 966 - 990