SOME PROPERTIES OF QUANTUM LEVY AREA IN FOCK AND NON-FOCK QUANTUM STOCHASTIC CALCULUS

被引:0
|
作者
Chen, Shang [1 ,2 ]
Hudson, Robin [2 ]
机构
[1] Univ Loughborough, Dept Comp Sci, Loughborough LE11 3TU, Leics, England
[2] Univ Loughborough, Dept Math, Loughborough LE11 3TU, Leics, England
来源
关键词
Quantum Levy area; non-Fock quantum stochastic calculus; time reversal; THEOREM;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the analogue of Levy area, defined as an iterated stochastic integral, obtained by replacing two independent component one-dimensional Brownian motions by the mutually non-commuting momentum and position Brownian motions P and Q of either Fock or non-Fock quantum stochastic calculus, which are also stochastically independent in a certain sense. We show that the resulting quantum Levy area is trivially distributed in the Fock case, but has a non-trivial distribution in non-Fock quantum stochastic calculus which, after rescaling, interpolates between the trivial distribution and that of classical Levy area in the "infinite temperature" limit. We also show that it behaves differently from the classical Levy area under a kind of time reversal, in both the Fock and non-Fock cases.
引用
收藏
页码:425 / 434
页数:10
相关论文
共 50 条
  • [31] Fock theories and quantum logics
    Ivanov, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (01) : 77 - 87
  • [32] Fock representations and quantum matrices
    Shklyarov, D
    Sinel'Shchikov, S
    Vaksman, L
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2004, 15 (09) : 855 - 894
  • [33] FERMION STOCHASTIC CALCULUS IN DIRAC-FOCK SPACE
    APPLEBAUM, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (02): : 257 - 270
  • [34] A QUANTUM NONADAPTED ITO FORMULA AND STOCHASTIC-ANALYSIS IN FOCK SCALE
    BELAVKIN, VP
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (02) : 414 - 447
  • [35] STOCHASTIC INTEGRAL-REPRESENTATION OF BOUNDED QUANTUM MARTINGALES IN FOCK SPACE
    PARTHASARATHY, KR
    SINHA, KB
    JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 67 (01) : 126 - 151
  • [37] Adaptive Quantum Non-Demolition Measurement of Fock States
    Peaudecerf, B.
    Rybarczyk, T.
    Gerlich, S.
    Dotsenko, I.
    Gleyzes, S.
    Brune, M.
    Raimond, J. -M.
    Haroche, S.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [38] Quantum computational semantics on Fock space
    Dalla Chiara, M. L.
    Giuntini, R.
    Gudder, S.
    Leporini, R.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (12) : 2219 - 2230
  • [39] Quantum simulations with multiphoton Fock states
    T. J. Sturges
    T. McDermott
    A. Buraczewski
    W. R. Clements
    J. J. Renema
    S. W. Nam
    T. Gerrits
    A. Lita
    W. S. Kolthammer
    A. Eckstein
    I. A. Walmsley
    M. Stobińska
    npj Quantum Information, 7
  • [40] Quantum trajectories for propagating Fock states
    Baragiola, Ben Q.
    Combes, Joshua
    PHYSICAL REVIEW A, 2017, 96 (02)