Kπ scattering and the K* decay width from lattice QCD

被引:54
|
作者
Prelovsek, Sasa [1 ,2 ]
Leskovec, Luka [2 ]
Lang, C. B. [3 ]
Mohler, Daniel [4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[2] Jozef Stefan Inst, Ljubljana 1000, Slovenia
[3] Graz Univ, Inst Phys, A-8010 Graz, Austria
[4] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 05期
基金
美国能源部;
关键词
QUANTUM-FIELD THEORIES; FINITE-VOLUME; STATES; RESONANCE; MATRIX; MESON;
D O I
10.1103/PhysRevD.88.054508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
K* mesons and in particular the K*(892) were frequently addressed in lattice simulations, but always while ignoring that the K*(892) decays strongly. We present an exploratory extraction of the masses and widths for the K* resonances by simulating K pi scattering in p waves with I 1/2 on the lattice. The K pi system with total momenta P = 2 pi/Le(z), 2 pi/L(e(x) + e(y)), and 0, that allows the extraction of phase shifts at several values of K pi relative momenta, is studied. A Breit-Wigner fit of the phase renders a K*(892) resonance mass m(lat) = 891 +/- 14 MeV and the K*(892) -> K pi coupling g(lat) = 5.7 +/- 1.6 compared to the experimental values m(exp) approximate to 892 MeV and g(exp) = 5.72 +/- 0: 06, where g parametrizes the K* -> K pi width. When extracting the phase shift around the K*(1410) and K-2*(1430) resonances, we take into account the mixing of p waves with d waves and assume that the scattering is elastic in our simulation. This gives us an estimate of the K*(1410) resonance mass m(lat) = 1.33 +/- 0.02 GeV compared to m(exp) = 1.414 -> 0.0015 GeV, assuming the experimental K*(1410)-> K pi coupling. We contrast the resonant I = 1/2 channel with the repulsive nonresonant I = 3/2 channel, where the phase is found to be negative and small, in agreement with experiment.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] D → K, lv semileptonic decay scalar form factor and |Vcs| from lattice QCD
    Na, Heechang
    Davies, Christine T. H.
    Follana, Eduardo
    Lepage, G. Peter
    Shigemitsu, Junko
    PHYSICAL REVIEW D, 2010, 82 (11):
  • [22] Radiative Decay Width of J=ψ- γη(2) from Nf=2 Lattice QCD
    Jiang, Xiangyu
    Chen, Feiyu
    Chen, Ying
    Gong, Ming
    Li, Ning
    Liu, Zhaofeng
    Sun, Wei
    Zhang, Renqiang
    PHYSICAL REVIEW LETTERS, 2023, 130 (06)
  • [23] K π scattering for isospin 1/2 and 3/2 in lattice QCD
    Lang, C. B.
    Leskovec, Luka
    Mohler, Daniel
    Prelovsek, Sasa
    PHYSICAL REVIEW D, 2012, 86 (05):
  • [24] Calculation of K → ππ decay amplitudes with improved Wilson fermion action in lattice QCD
    Ishizuka, N.
    Ishikawa, K. -I.
    Ukawa, A.
    Yoshie, T.
    PHYSICAL REVIEW D, 2015, 92 (07):
  • [25] Interactions of πK, ππK and KKπ systems at maximal isospin from lattice QCD
    Zachary T. Draper
    Andrew D. Hanlon
    Ben Hörz
    Colin Morningstar
    Fernando Romero-López
    Stephen R. Sharpe
    Journal of High Energy Physics, 2023
  • [26] Interactions of πK, ππK and KKπ systems at maximal isospin from lattice QCD
    Draper, Zachary T.
    Hanlon, Andrew D.
    Horz, Ben
    Morningstar, Colin
    Romero-Lopez, Fernando
    Sharpe, Stephen R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
  • [27] B→Kη(′) decay in perturbative QCD
    Kou, E
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 111 : 264 - 266
  • [28] B→Kη(′) decay in perturbative QCD
    Kou, E
    Sanda, AI
    PHYSICS LETTERS B, 2002, 525 (3-4) : 240 - 248
  • [29] Physical-mass calculation of ρ(770) and K*(892) resonance parameters via ππ and Kπ scattering amplitudes from lattice QCD
    Boyle, Peter
    Erben, Felix
    Gulpers, Vera
    Hansen, Maxwell T.
    Joswig, Fabian
    Marshall, Michael
    Lachini, Nelson Pitanga
    Portelli, Antonin
    PHYSICAL REVIEW D, 2025, 111 (05)
  • [30] I=1/2 S-wave and P-wave Kπ scattering and the κ and K* resonances from lattice QCD
    Rendon, Gumaro
    Leskovec, Luka
    Meinel, Stefan
    Negele, John
    Paul, Srijit
    Petschlies, Marcus
    Pochinsky, Andrew
    Silvi, Giorgio
    Syritsyn, Sergey
    PHYSICAL REVIEW D, 2020, 102 (11)