Bayesian analysis based on the Jeffreys prior for the hyperbolic distribution

被引:8
|
作者
Fonseca, Thais C. O. [1 ]
Migon, Helio S. [1 ]
Ferreira, Marco A. R. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Metodos Estat, Ctr Technol, BR-21941909 Rio De Janeiro, RJ, Brazil
[2] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Asymmetry; heavy tails; normal-mean mixture; noninformative prior; SKEW-NORMAL DISTRIBUTION; REGRESSION-MODEL; SIZE;
D O I
10.1214/11-BJPS142
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we develop Bayesian analysis based on the Jeffreys prior for the hyperbolic family of distributions. It is usually difficult to estimate the four parameters in this class: to be reliable the maximum likelihood estimator typically requires large sample sizes of the order of thousands of observations. Moreover, improper prior distributions may lead to improper posterior distributions, whereas proper prior distributions may dominate the analysis. Here, we show through a simulation study that Bayesian methods based on Jeffreys prior provide reliable point and interval estimators. Moreover, this simulation study shows that for the absolute loss function Bayesian estimators compare favorably to maximum likelihood estimators. Finally, we illustrate with an application to real data that our methodology allows for parameter estimation with remarkable good properties even for a small sample size.
引用
收藏
页码:327 / 343
页数:17
相关论文
共 50 条
  • [31] Adaptive sparseness using Jeffreys Prior
    Figueiredo, MAT
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 697 - 704
  • [32] JEFFREYS PRIOR REGULARIZATION FOR LOGISTIC REGRESSION
    Tam Nguyen
    Raich, Raviv
    Phung Lai
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [33] Bayesian framework for interval-valued data using Jeffreys' prior and posterior predictive checking methods
    Xu, Min
    Qin, Zhongfeng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (05) : 2425 - 2443
  • [34] Generalization of Jeffreys divergence-based priors for Bayesian hypothesis testing
    Bayarri, M. J.
    Garcia-Donato, G.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 981 - 1003
  • [35] Quantifying artefacts over time: Interval estimation of a Poisson distribution using the Jeffreys prior
    Collins-Elliott, S. A.
    ARCHAEOMETRY, 2019, 61 (05) : 1207 - 1222
  • [36] Bayesian Blind Image Deconvolution using an Hyperbolic-Secant prior
    Castro-Macias, Francisco M.
    Perez-Buenob, Fernando
    Vega, Miguel
    Mateos, Javier
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2024 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2024, : 1500 - 1506
  • [37] Bayesian Analysis of fMRI Data with ICA Based Spatial Prior
    Bathula, Deepti R.
    Tagare, Hemant D.
    Staib, Lawrence H.
    Papademetris, Xenophon
    Schultz, Robert T.
    Duncan, James S.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT II, PROCEEDINGS, 2008, 5242 : 246 - 254
  • [38] RAYLEIGH DISTRIBUTION REVISITED VIA EXTENSION OF JEFFREYS PRIOR INFORMATION AND A NEW LOSS FUNCTION
    Dey, Sanku
    Dey, Tanujit
    REVSTAT-STATISTICAL JOURNAL, 2011, 9 (03) : 213 - 226
  • [39] Bayesian rainfall frequency analysis with extreme value using the informative prior distribution
    Chung, Eun-Sung
    Kim, Sang Ug
    KSCE JOURNAL OF CIVIL ENGINEERING, 2013, 17 (06) : 1502 - 1514
  • [40] Spying on the prior of the number of data clusters and the partition distribution in Bayesian cluster analysis
    Greve, Jan
    Gruen, Bettina
    Malsiner-Walli, Gertraud
    Fruehwirth-Schnatter, Sylvia
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2022, 64 (02) : 205 - 229