Injectable hydrogels based on MPEG-PCL-RGD and BMSCs for bone tissue engineering

被引:42
|
作者
Kim, Hyun Joo [1 ,2 ]
You, Su Jung [2 ]
Yang, Dae Hyeok [2 ]
Eun, Jin [3 ]
Park, Hae Kwan [3 ]
Kim, Moon Suk [4 ]
Chun, Heung Jae [1 ,2 ,5 ]
机构
[1] Catholic Univ Korea, Dept Biomed & Hlth Sci, Seoul 06591, South Korea
[2] Catholic Univ Korea, Inst Cell & Tissue Engn, Seoul 06591, South Korea
[3] Catholic Univ Korea, Coll Med, Eunpyeong St Marys Hosp, Dept Neurosurg, Seoul 03312, South Korea
[4] Ajou Univ, Dept Mol Sci & Technol, Suwon 16499, South Korea
[5] Catholic Univ Korea, Coll Med, Dept Med Life Sci, Seoul 06591, South Korea
基金
新加坡国家研究基金会;
关键词
COMPOSITE HYDROGELS; IN-VITRO; BIOMATERIALS; COPOLYMER;
D O I
10.1039/d0bm00588f
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The aim of this study was to investigate the osteogenic potential of bone marrow-derived mesenchymal stem cells (BMSCs) seeded on novel thermosensitivein situforming hydrogel systems comprising methoxy polyethylene glycol-polycaprolactone (MP) and RGD-conjugated MP (MP-RGD)in vitroandin vivo. Real-time polymerase chain reaction (PCR) together with immunofluorescence staining revealed the strong expression of osteogenic markers (collagen 1 and osteocalcin) of BMSCs in MP/MP-RGD samples compared to MP samples. PCR array testing also showed the upregulation of the interconnected signaling networks regulating cell proliferation and differentiation, which was further verified through the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Histological findings and computed tomographic analysis demonstrated that the MP/MP-RGD hydrogel dramatically promoted new bone formation in a rabbit calvarial defect model. In conclusion, this hydrogel appears to elicit cellular behaviors desired for bone tissue regeneration.
引用
收藏
页码:4334 / 4345
页数:12
相关论文
共 50 条
  • [31] Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering
    Shaygani, Hossein
    Mofrad, Yasaman Mozhdehbakhsh
    Demneh, Seyed Mohammadhossein Rezaei
    Hafezi, Shayesteh
    Almasi-Jaf, Aram
    Shamloo, Amir
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 282
  • [32] Injectable in situ gelling methylcellulose-based hydrogels for bone tissue regeneration
    Bonetti, Lorenzo
    Borsacchi, Silvia
    Soriente, Alessandra
    Boccali, Alberto
    Calucci, Lucia
    Raucci, Maria Grazia
    Altomare, Lina
    JOURNAL OF MATERIALS CHEMISTRY B, 2024, 12 (18) : 4427 - 4440
  • [33] Thermosensitive and biodegradable PCL-based hydrogels: potential scaffolds for cartilage tissue engineering
    Valipour, Fereshteh
    Valioglu, Ferzane
    Rahbarghazi, Reza
    Navali, Amir Mohammad
    Rashidi, Mohammad Reza
    Davaran, Soodabeh
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2023, 34 (05) : 695 - 714
  • [34] Injectable Scaffold for Bone Tissue Engineering Applications
    Rahman, C. V.
    Cox, H. C.
    Hamilton, L. G.
    Quirk, R. A.
    Rose, F. R. A. J.
    Shakesheff, K. M.
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2010, 62 (10) : 1508 - 1509
  • [35] Electrospun Polycaprolactone (PCL) and PCL/nano-hydroxyapatite (PCL/nHA)-based Nanofibers for Bone Tissue Engineering Application
    Chong, Lor Huai
    Hassan, Mohd Izzat
    Sultana, Naznin
    2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,
  • [36] Adipose Tissue Engineering Using Injectable, Oxidized Alginate Hydrogels
    Kim, Woo Seob
    Mooney, David J.
    Arany, Praveen R.
    Lee, Kangwon
    Huebsch, Nathaniel
    Kim, Jaeyun
    TISSUE ENGINEERING PART A, 2012, 18 (7-8) : 737 - 743
  • [37] Function and Mechanism of RGD in Bone and Cartilage Tissue Engineering
    Yang, Meng
    Zhang, Zheng-Chu
    Liu, Yan
    Chen, You-Rong
    Deng, Rong-Hui
    Zhang, Zi-Ning
    Yu, Jia-Kuo
    Yuan, Fu-Zhen
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [38] Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering
    Park, Hyejin
    Choi, Bogyu
    Hu, Junli
    Lee, Min
    ACTA BIOMATERIALIA, 2013, 9 (01) : 4779 - 4786
  • [39] Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications
    Janarthanan Gopinathan
    Insup Noh
    Tissue Engineering and Regenerative Medicine, 2018, 15 : 531 - 546
  • [40] Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering
    Ren, Kaixuan
    He, Chaoliang
    Xiao, Chunsheng
    Li, Gao
    Chen, Xuesi
    BIOMATERIALS, 2015, 51 : 238 - 249