Physical-statistical retrieval of water vapor profiles using SSM/T-2 sounder data

被引:7
|
作者
Rieder, MJ [1 ]
Kirchengast, G [1 ]
机构
[1] Graz Univ, Inst Meteorol & Geophys, A-8010 Graz, Austria
关键词
D O I
10.1029/1999GL900244
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The feasibility of retrieving water vapor profiles from downlooking passive microwave sounder data is demonstrated by usage of a retrieval algorithm which extends Bayesian optimal estimation. Special Sensor Microwave T-2 (SSM/T-2) downlooking sounder data, consisting of brightness temperature measurements sensitive to water vapor, are used together with total water vapor content data for computing tropospheric water vapor profiles. The significant nonlinearity in the cost function, an implication of the corresponding (nonlinear) radiative transfer equation, necessitates several extensions of the well-known optimal estimation inversion scheme. We supplemented the scheme by simulated annealing and iterative a priori lightweighting and obtained a powerful physical-statistical hybrid algorithm. Retrievals based on SSM/T-2 data were compared to atmospheric analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF). A statistical validation of the retrieved profiles is presented. The comparisons indicate an approximate accuracy of about 15 to 20 percent for relative humidity.
引用
收藏
页码:1397 / 1400
页数:4
相关论文
共 50 条
  • [31] Refined Physical Retrieval of Integrated Water Vapor and Cloud Liquid for Microwave Radiometer Data
    Maetzler, Christian
    Morland, June
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (06): : 1585 - 1594
  • [32] Retrieval of water vapor profiles with radio occultation measurements using an artificial neural network
    Wang Xin
    Lu Daren
    Advances in Atmospheric Sciences, 2005, 22 (5) : 759 - 764
  • [33] Coastal Water Remote Sensing From Sentinel-2 Satellite Data Using Physical, Statistical, and Neural Network Retrieval Approach
    Marzano, Frank S.
    Iacobelli, Michele
    Orlandi, Massimo
    Cimini, Domenico
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 915 - 928
  • [34] The retrieval of atmospheric water vapor and cloud liquid water over the oceans from a simple radiative transfer model: Application to SSM/I data
    Guissard, A
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (01): : 328 - 332
  • [35] The effect of surface reflectivity on water vapor retrieval using MODIS NIR data
    Wang, WM
    Sun, XM
    Zhang, RH
    Zhu, ZL
    Xu, JP
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 4109 - 4111
  • [36] Retrieval of Atmospheric Water Vapor Profiles From COSMIC-2 Radio Occultation Constellation Using Machine Learning
    Hooda, Soumil
    Gupta, Manik
    Singh, Randhir
    Ojha, Satya P.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 7
  • [37] RETRIEVAL OF CLEAR SKY MOISTURE PROFILES USING THE 183 GHZ WATER-VAPOR LINE
    KAKAR, RK
    JOURNAL OF CLIMATE AND APPLIED METEOROLOGY, 1983, 22 (07): : 1282 - 1289
  • [38] RETRIEVAL OF ATMOSPHERIC WATER-VAPOR PROFILES USING RADIOMETRIC MEASUREMENTS AT 183 AND 90 GHZ
    LUTZ, R
    WILHEIT, TT
    WANG, JR
    KAKAR, RK
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1991, 29 (04): : 602 - 609
  • [39] Refining MODIS NIR Atmospheric Water Vapor Retrieval Algorithm Using GPS-Derived Water Vapor Data
    He, Jia
    Liu, Zhizhao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 3682 - 3694
  • [40] Retrieval of soil moisture and vegetation water content using SSM/I data over a corn and soybean region
    Wen, J
    Jackson, TJ
    Bindlish, R
    Hsu, AY
    Su, ZB
    JOURNAL OF HYDROMETEOROLOGY, 2005, 6 (06) : 854 - 863