On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges

被引:4
|
作者
Choque Rivero, A. E. [1 ]
Karlovich, Yu. I. [2 ]
Merzon, A. E. [1 ]
Zhevandrov, P. N. [3 ,4 ]
机构
[1] Univ Michoacan, Inst Phys & Math, Morelia 58060, Michoacan, Mexico
[2] Autonomous Univ State Morelos, Fac Sci, Cuernavaca 62209, Morelos, Mexico
[3] Univ Michoacan, Fac Phys & Math, Morelia 58060, Michoacan, Mexico
[4] Univ La Sabana, Fac Engn, Chia, Cundinamarca, Colombia
关键词
PRINCIPLE;
D O I
10.1134/S1061920812030090
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.
引用
收藏
页码:373 / 384
页数:12
相关论文
共 50 条
  • [21] Rayleigh wave scattering by two adhering elastic wedges
    Budaev, BV
    Bogy, DB
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1979): : 2949 - 2996
  • [22] PRESSURE DISTRIBUTION BEHIND A NONSTATIONARY REFLECTED-DIFFRACTED OBLIQUE SHOCK-WAVE
    SRIVASTAVA, RS
    DESCHAMBAULT, RL
    AIAA JOURNAL, 1984, 22 (02) : 305 - 306
  • [23] Investigation of diffracted fields in buildings and wedges: a comparison study
    Iwashige, Jiro
    Barolli, Leonard
    Kameyama, Saki
    Iwaida, Motohiko
    INTERNATIONAL JOURNAL OF SPACE-BASED AND SITUATED COMPUTING, 2015, 5 (01) : 1 - 8
  • [24] Efficient calculation of diffracted intensities in the case of nonstationary scattering by biological macromolecules under XFEL pulses
    Lunin, Vladimir Y.
    Grum-Grzhimailo, Alexei N.
    Gryzlova, Elena V.
    Sinitsyn, Dmitry O.
    Petrova, Tatiana E.
    Lunina, Natalia L.
    Balabaev, Nikolai K.
    Tereshkina, Ksenia B.
    Stepanov, Alexei S.
    Krupyanskii, Yurii F.
    ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2015, 71 : 293 - 303
  • [25] Nonstationary theory of wave-packet potential scattering
    Bitouk, DR
    Fedorov, MV
    PHYSICAL REVIEW A, 1998, 58 (02): : 1195 - 1203
  • [26] ZEROS OF PARTIAL-WAVE SCATTERING AMPLITUDE
    JIN, YS
    KANG, K
    PHYSICAL REVIEW, 1966, 152 (04): : 1227 - +
  • [27] INFINITE COMPONENT WAVE EQUATION AND SCATTERING AMPLITUDE
    GOTO, T
    OTOKOZAWA, J
    PROGRESS OF THEORETICAL PHYSICS, 1971, 45 (01): : 263 - +
  • [28] PLANE-WAVE APPROXIMATION FOR SCATTERING AMPLITUDE
    CHAN, HH
    RAZAVY, M
    CANADIAN JOURNAL OF PHYSICS, 1964, 42 (06) : 1017 - &
  • [29] ON DIFFRACTED WAVE FRONTS
    WOLFE, P
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1979, 84 : 35 - 54
  • [30] SCATTERING OF A DIFFRACTED WAVE FIELD BY TURBULENT REFRACTIVE-INDEX INHOMOGENEITIES OF THE TROPOSPHERE
    KUKUSHKIN, AV
    FREILIKER, VD
    FUKS, IM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1983, 26 (07): : 817 - 822