On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges

被引:4
|
作者
Choque Rivero, A. E. [1 ]
Karlovich, Yu. I. [2 ]
Merzon, A. E. [1 ]
Zhevandrov, P. N. [3 ,4 ]
机构
[1] Univ Michoacan, Inst Phys & Math, Morelia 58060, Michoacan, Mexico
[2] Autonomous Univ State Morelos, Fac Sci, Cuernavaca 62209, Morelos, Mexico
[3] Univ Michoacan, Fac Phys & Math, Morelia 58060, Michoacan, Mexico
[4] Univ La Sabana, Fac Engn, Chia, Cundinamarca, Colombia
关键词
PRINCIPLE;
D O I
10.1134/S1061920812030090
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.
引用
收藏
页码:373 / 384
页数:12
相关论文
共 50 条