Nitrite intensity explains N management effects on N2O emissions in maize

被引:124
|
作者
Maharjan, Bijesh [1 ]
Venterea, Rodney T. [1 ,2 ]
机构
[1] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA
[2] ARS, USDA, Soil & Water Management Unit, St Paul, MN 55108 USA
来源
关键词
Nitrogen; Nitrous oxide; Greenhouse gas; Corn; Nitrate; Urea; Dicyandiamide; NITROUS-OXIDE EMISSIONS; FERTILIZER NITROGEN; NITRIFIER DENITRIFICATION; SOIL; KINETICS; AMMONIA; NITRIFICATION; OXIDATION; MECHANISMS; RELEASE;
D O I
10.1016/j.soilbio.2013.07.015
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
It is typically assumed that the dependence of nitrous oxide (N2O) emissions on soil nitrogen (N) availability is best quantified in terms of ammonium (NH4+) and/or nitrate (NO3-) concentrations. In contrast, nitrite (NO2-) is seldom measured separately from NO3- despite its role as a central substrate in N2O production. We examined the effects of three N fertilizer sources and two placement methods on N2O and N dynamics in maize over two growing seasons. Cumulative N2O emissions were well-correlated with NO2- intensity (NO21) but not with NO3- (NO3I) or NH4+ (NH4I) intensity. By itself, NO21 explained more than 44% of the overall variance in N2O. Treatment effects on N2O and NO21 were similar. When conventional urea (U) was applied using mid-row banding (MRB), both N2O and NO21 increased by a factor of about 2 compared to broadcast/incorporated (BI). When polymer-coated urea (PCU) was the N source, MRB placement increased both N2O and NO21 compared to BI only in the wetter of the two years. When urea with microbial inhibitors (IU) was the N source, N2O and NO21 were lowest across both years and were less affected by placement than U or PCU. A 50/50 mix of IU and U reduced N2O and NO21 compared to U alone, suggesting that a mixed N source may provide an economical N2O mitigation strategy. Our results show that practices which reduce NO accumulation have the potential to also reduce N2O emissions, and that separate consideration of NO3- and NO dynamics can provide more insight than their combined dynamics as typically quantified. Published by Elsevier Ltd.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [31] Effects of rice straw mulching on N2O emissions and maize productivity in a rain-fed upland
    Wu, Xiao Hong
    Wang, Wei
    Xie, Xiao Li
    Yin, Chun Mei
    Hou, Hai Jun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (07) : 6407 - 6413
  • [32] Effects of rice straw mulching on N2O emissions and maize productivity in a rain-fed upland
    Xiao Hong Wu
    Wei Wang
    Xiao Li Xie
    Chun Mei Yin
    Hai Jun Hou
    Environmental Science and Pollution Research, 2018, 25 : 6407 - 6413
  • [33] EFFECTS OF MAIZE (ZEA MAYS L.) INTERCROPPING WITH LEGUMES ON NITROUS OXIDE (N2O) EMISSIONS
    Chen, J. S.
    Amin, A. S.
    Hamani, A. K. M.
    Wang, G. S.
    Zhang, Y. Y.
    Liu, K.
    Gao, Y.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2021, 19 (05): : 3393 - 3407
  • [34] An improved laboratory method shows that freezing intensity increases N2O emissions
    Libby, Mark D.
    VanderZaag, Andrew C.
    Gregorich, Edward G.
    Wagner-Riddle, Claudia
    CANADIAN JOURNAL OF SOIL SCIENCE, 2020, 100 (02) : 136 - 149
  • [35] Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture
    Ciarlo, E.
    Conti, M.
    Bartoloni, N.
    Rubio, G.
    BIOLOGY AND FERTILITY OF SOILS, 2008, 44 (07) : 991 - 995
  • [36] Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture
    E. Ciarlo
    M. Conti
    N. Bartoloni
    G. Rubio
    Biology and Fertility of Soils, 2008, 44 : 991 - 995
  • [37] Large variability in CO2 and N2O emissions and in 15N site preference of N2O from reactions of nitrite with lignin and its derivatives at different pH
    Wei, Jing
    Zhou, Minghua
    Vereecken, Harry
    Brueggemann, Nicolas
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2017, 31 (16) : 1333 - 1343
  • [38] Effect of agricultural management on N2O emissions in the Brazilian sugarcane yield
    Fracetto, Felipe J. C.
    Fracetto, Giselle G. M.
    Bertini, Simone C. B.
    Cerri, Carlos C.
    Feigl, Brigitte J.
    Siqueira Neto, Marcos
    SOIL BIOLOGY & BIOCHEMISTRY, 2017, 109 : 205 - 213
  • [39] Recovery of groundwater N2O at the soil surface and its contribution to total N2O emissions
    Daniel Weymann
    Reinhard Well
    Carolin von der Heide
    Jürgen Böttcher
    Heiner Flessa
    Wilhelmus H. M. Duijnisveld
    Nutrient Cycling in Agroecosystems, 2009, 85 : 299 - 312
  • [40] N2O hydrate formation in porous media: A potential method to mitigate N2O emissions
    Zhao, Jiafei
    Guo, Xianwei
    Sun, Mingrui
    Zhao, Yuechao
    Yang, Lei
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2019, 361 : 12 - 20