Optimal tracking agent: a new framework of reinforcement learning for multiagent systems

被引:3
|
作者
Cao, Weihua [1 ]
Chen, Gang [1 ]
Chen, Xin [1 ]
Wu, Min [1 ]
机构
[1] Cent South Univ, Inst Adv Control & Intelligent Automat, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
来源
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE | 2013年 / 25卷 / 14期
基金
高等学校博士学科点专项科研基金;
关键词
estimator; action selection mechanism; curse of dimensionality; optimal tracking agent; multiagent systems;
D O I
10.1002/cpe.2870
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
SUMMARYThe curse of dimensionality is a ubiquitous problem for multiagent reinforcement learning, which means the learning and storing space grows exponentially with the number of agents and hinders the application of multiagent reinforcement learning. To relieve this problem, we propose a new framework named as optimal tracking agent (OTA). The OTA views the other agents as part of the environment and uses a reduced form to learn the optimal decision. Although merging other agents into the environment may reduce the dimension of action space, the environment characterized by such form is dynamic and does not satisfy the convergence of reinforcement learning (RL). Thus, we develop an estimator to track the dynamics of the environment. The estimator obtains the dynamic model, and then the model-based RL can be used to react to the dynamic environment optimally. Because the Q-function in OTA is also a dynamic process because of other agents' dynamics, different from traditional RL, in which the learning is a stationary process and the usual action selection mechanisms just suit to such stationary process, we improve the greedy action selection mechanism to adapt to such dynamics. Thus, the OTA will have convergence. An experiment illustrates the validity and efficiency of the OTA.Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:2002 / 2015
页数:14
相关论文
共 50 条
  • [21] A survey on transfer learning for multiagent reinforcement learning systems
    Da Silva, Felipe Leno
    Reali Costa, Anna Helena
    Journal of Artificial Intelligence Research, 2019, 64 : 645 - 703
  • [22] A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems
    Da Silva, Felipe Leno
    Reali Costa, Anna Helena
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 64 : 645 - 703
  • [23] Scheduling in Multiagent Systems Using Reinforcement Learning
    Minashina, I. K.
    Gorbachev, R. A.
    Zakharova, E. M.
    DOKLADY MATHEMATICS, 2022, 106 (SUPPL 1) : S70 - S78
  • [24] Decentralized Reinforcement Learning Inspired by Multiagent Systems
    Adjodah, Dhaval
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 1729 - 1730
  • [25] The dynamics of reinforcement learning in cooperative multiagent systems
    Claus, C
    Boutilier, C
    FIFTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-98) AND TENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICAL INTELLIGENCE (IAAI-98) - PROCEEDINGS, 1998, : 746 - 752
  • [26] Scheduling in Multiagent Systems Using Reinforcement Learning
    I. K. Minashina
    R. A. Gorbachev
    E. M. Zakharova
    Doklady Mathematics, 2022, 106 : S70 - S78
  • [27] Effect of reinforcement learning on coordination of multiagent systems
    Bukkapatnam, S
    Gao, G
    NETWORK INTELLIGENCE: INTERNET-BASED MANUFACTURING, 2000, 4208 : 31 - 41
  • [28] Coordination in multiagent reinforcement learning systems by virtual reinforcement signals
    Kamal, M.
    Murata, Junichi
    INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2007, 11 (03) : 181 - 191
  • [29] Scalable Reinforcement Learning for Multiagent Networked Systems
    Qu, Guannan
    Wierman, Adam
    Li, Na
    OPERATIONS RESEARCH, 2022, 70 (06) : 3601 - 3628
  • [30] Reinforcement Learning H∞ Optimal Formation Control for Perturbed Multiagent Systems With Nonlinear Faults
    Wu, Yuxia
    Liang, Hongjing
    Xuan, Shuxing
    Ahn, Choon Ki
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (03): : 1935 - 1947