Comparison of optical performance monitoring techniques using artificial neural networks

被引:1
|
作者
Ribeiro, Vitor [1 ]
Lima, Mario [1 ]
Teixeira, Antonio [1 ]
机构
[1] Inst Telecomunicacoes, P-3810193 Aveiro, Portugal
来源
NEURAL COMPUTING & APPLICATIONS | 2013年 / 23卷 / 3-4期
关键词
Optical performance monitoring; Artificial neural networks; Partial least squares; Parametric asynchronous eye diagram; Delay-Tap Asynchronous Sampling; Asynchronous amplitude histograms; DISPERSION;
D O I
10.1007/s00521-013-1405-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we make an overview of three techniques that have used artificial neural networks (ANNs) to model impairments in optical fiber. A comparison between a linear partial least squares regression algorithm and ANN is also shown. We demonstrate that nonlinear modeling is required for multi-impairment monitoring in optical fiber when using Parametric Asynchronous Eye Diagram (PAED). Results demonstrating the accuracy of PAED are also shown. A comparison between PAED and Synchronous Eye Diagrams is also demonstrated, for NRZ, RZ and QPSK modulated signals. We show that PAED can provide comprehensible diagrams for QPSK modulated signals, under a certain range of chromatic dispersion.
引用
收藏
页码:583 / 589
页数:7
相关论文
共 50 条
  • [21] Optical Nonlinearity Monitoring and Launch Power Optimization by Artificial Neural Networks
    Lonardi, Matteo
    Pesic, Jelena
    Jenneve, Philippe
    Ramantanis, Petros
    Rossi, Nicola
    Ghazisaeidi, Amirhossein
    Bigo, Sebastien
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (09) : 2637 - 2645
  • [22] Meander Structure Analysis Techniques Using Artificial Neural Networks
    Belova-Ploniene, Diana
    Krukonis, Audrius
    Abromavicius, Vytautas
    Serackis, Arturas
    Urbanavicius, Vytautas
    Katkevicius, Andrius
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [23] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, Sh
    JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, 2010, 110 (05): : 207 - 212
  • [24] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, S.H.
    Journal of the Southern African Institute of Mining and Metallurgy, 2010, 110 (05) : 207 - 212
  • [25] Tool condition monitoring in drilling using artificial neural networks
    Karri, V
    Kiatcharoenpol, T
    AI 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2003, 2903 : 293 - 301
  • [26] Indirect aircraft structural monitoring using artificial neural networks
    Reed, S.C.
    Aeronautical Journal, 2008, 112 (1131): : 251 - 255
  • [27] PROCESS MONITORING USING AUTOASSOCIATIVE, FEEDFORWARD ARTIFICIAL NEURAL NETWORKS
    SKITT, PJC
    JAVED, MA
    SANDERS, SA
    HIGGINSON, AM
    JOURNAL OF INTELLIGENT MANUFACTURING, 1993, 4 (01) : 79 - 94
  • [28] Monitoring of nanodiamonds in human urine using artificial neural networks
    Laptinskiy, Kirill
    Burikov, Sergey
    Dolenko, Sergey
    Efitorov, Alexander
    Sarmanova, Olga
    Shenderova, Olga
    Vlasov, Igor
    Dolenko, Tatiana
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (10): : 2614 - 2622
  • [29] On the Possibility of Using Artificial Neural Networks in Seismic Monitoring Tasks
    A. E. Hannibal
    Seismic Instruments, 2019, 55 : 334 - 344
  • [30] Indirect aircraft structural monitoring using artificial neural networks
    Reed, S. C.
    AERONAUTICAL JOURNAL, 2008, 112 (1131): : 251 - 265