Redundant data elimination in independent component analysis

被引:0
|
作者
Liu, XH [1 ]
Randall, RB [1 ]
机构
[1] Univ New S Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Independent component analysis involves a lot of data in statistical calculations. This paper studies the model by examining which part of the data is essential and which part is redundant for defining the mixing system and proposes an idea called redundant data elimination. Statistical properties change in the direction of uniform distribution as redundant data are eliminated, yet the model still holds and the solution still exists. A theoretical explanation is given of the geometrical transformation of independent sources. The above reasoning is verified by separation experiment. It is shown that this idea can also improve model match for unsymmetrical sources.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 50 条
  • [21] Application of independent component analysis to the iKAGRA data
    Akutsu, T.
    Ando, M.
    Arai, K.
    Arai, Y.
    Araki, S.
    Araya, A.
    Aritomi, N.
    Asada, H.
    Aso, Y.
    Atsuta, S.
    Awai, K.
    Bae, S.
    Bae, Y.
    Baiotti, L.
    Bajpai, R.
    Barton, M. A.
    Cannon, K.
    Capocasa, E.
    Chan, M.
    Chen, C.
    Chen, K.
    Chen, Y.
    Chu, H.
    Chu, Y-K
    Craig, K.
    Creus, W.
    Doi, K.
    Eda, K.
    Eguchi, S.
    Enomoto, Y.
    Flaminio, R.
    Fujii, Y.
    Fujimoto, M-K
    Fukunaga, M.
    Fukushima, M.
    Furuhata, T.
    Ge, G.
    Hagiwara, A.
    Haino, S.
    Hasegawa, K.
    Hashino, K.
    Hayakawa, H.
    Hayama, K.
    Himemoto, Y.
    Hiranuma, Y.
    Hirata, N.
    Hirobayashi, S.
    Hirose, E.
    Hong, Z.
    Hsieh, B. H.
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (05):
  • [22] Analyzing hyperspectral data with independent component analysis
    Bayliss, J
    Gualtieri, JA
    Cromp, RF
    EXPLOITING NEW IMAGE SOURCES AND SENSORS, 26TH AIPR WORKSHOP, 1998, 3240 : 133 - 143
  • [23] Independent component analysis and clustering for pollution data
    Asis Kumar Chattopadhyay
    Saptarshi Mondal
    Atanu Biswas
    Environmental and Ecological Statistics, 2015, 22 : 33 - 43
  • [24] QSAR Data cleansing with independent component analysis
    Breneman, Curt M.
    Embrechts, Mark J.
    Han, Long
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [25] Independent Component Analysis of Functional MRI Data
    Nath, Malaya Ku
    Sahambi, J. S.
    2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 1094 - 1099
  • [26] Independent component analysis of electronic nose data
    Martinelli, E
    D'Amico, A
    Di Natale, C
    Sensors and Microsystems, 2002, : 107 - 111
  • [27] Independent Component Analysis in Bioradar Data Processing
    Anishchenko, L. N.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 2206 - 2210
  • [28] Underdetermined independent component analysis by data generation
    Kim, SG
    Yoo, CD
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 445 - 452
  • [29] Ambiguity Elimination of Independent Component Analysis for Polarization Channel Alignment Tracking
    Nabavi, Neda
    Hall, Trevor J.
    2015 PHOTONICS CONFERENCE (IPC), 2015,
  • [30] Elimination of redundant information for web data mining
    Taib, SM
    Yeom, SJ
    Kang, BH
    ITCC 2005: International Conference on Information Technology: Coding and Computing, Vol 1, 2005, : 200 - 205