Distance Bounds for Graphs with Some Negative Bakry-Emery Curvature

被引:10
|
作者
Liu, Shiping [1 ]
Muench, Florentin [2 ]
Peyerimhoff, Norbert [3 ]
Rose, Christian [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Max Planck Inst Math Nat Wissensch, Inselstr 22, D-04103 Leipzig, Germany
[3] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
关键词
Bakry-Emery curvature; discrete Bonnet-Myers theorem; intrinsic metric; heat semigroup; METRIC-MEASURE-SPACES; LI-YAU INEQUALITY; RICCI CURVATURE; STOCHASTIC COMPLETENESS; LAPLACIAN; SPECTRUM; GEOMETRY;
D O I
10.1515/agms-2019-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove distance bounds for graphs possessing positive Bakry-Emery curvature apart from an exceptional set, where the curvature is allowed to be non-positive. If the set of non-positively curved vertices is finite, then the graph admits an explicit upper bound for the diameter. Otherwise, the graph is a subset of the tubular neighborhood with an explicit radius around the non-positively curved vertices. Those results seem to be the first assuming non-constant Bakry-Emery curvature assumptions on graphs.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Bakry-Emery curvature and diameter bounds on graphs
    Liu, Shiping
    Muench, Florentin
    Peyerimhoff, Norbert
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [2] Bakry-Emery Curvature Functions on Graphs
    Cushing, David
    Liu, Shiping
    Peyerimhoff, Norbert
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (01): : 89 - 143
  • [3] Bakry-emery curvature on graphs as an eigenvalue problem
    Cushing, David
    Kamtue, Supanat
    Liu, Shiping
    Peyerimhoff, Norbert
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (02)
  • [4] Spectrally positive Bakry-Emery Ricci curvature on graphs
    Muench, Florentin
    Rose, Christian
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 : 334 - 344
  • [5] Quartic graphs which are Bakry-Emery curvature sharp
    Cushing, David
    Kamtue, Supanat
    Peyerimhoff, Norbert
    May, Leyna Watson
    DISCRETE MATHEMATICS, 2020, 343 (03)
  • [6] BAKRY-EMERY CURVATURE-DIMENSION CONDITION AND RIEMANNIAN RICCI CURVATURE BOUNDS
    Ambrsio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    ANNALS OF PROBABILITY, 2015, 43 (01): : 339 - 404
  • [7] Bakry-emery Curvature Sharpness and Curvature Flow in Finite Weighted Graphs: Implementation
    Cushing, David
    Kamtue, Supanat
    Liu, Shiping
    Muench, Florentin
    Peyerimhoff, Norbert
    Snodgrass, Ben
    AXIOMS, 2023, 12 (06)
  • [8] Bounds on Harmonic Radius and Limits of Manifolds with Bounded Bakry-Emery Ricci Curvature
    Zhang, Qi S.
    Zhu, Meng
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 2082 - 2123
  • [9] Integral curvature bounds and bounded diameter with Bakry-Emery Ricci tensor
    Hwang, Seungsu
    Lee, Sanghun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 66 : 42 - 51
  • [10] Monotonicity formulas via the Bakry-Emery curvature
    Wang, Lin Feng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 89 : 230 - 241