Particle Swarm Optimization Based Support Vector Machine for Human Tracking

被引:0
|
作者
Xu, Zhenyuan [1 ]
Xu, Chao [1 ]
Watada, Junzo [2 ]
机构
[1] Nanjing Audit Univ, West Yushan Rd 86, Nanjing, Jiangsu, Peoples R China
[2] Waseda Univ, Grad Sch Informat Prod & Syst, Wakamatsu Ku, 2-7 Hibikino, Kitakyushu, Fukuoka, Japan
关键词
Human tracking; Occlusion; Real-time; Particle filter; PSO-SVM;
D O I
10.1007/978-3-319-39630-9_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human tracking is one of the most important researches in computer vision. It is quite useful for many applications, such as surveillance systems and smart vehicle systems. It is also an important basic step for content analysis for behavior recognition and target detection. Due to the variations in human positions, complicated backgrounds and environmental conditions, human tracking remains challenging work. In particular, difficulties caused by environment and background such as occlusion and noises should be solved. Also, real-time human tracking now seems a critical step in intelligent video surveillance systems because of its huge computational workload. In this paper we propose a Particle Swarm Optimization based Support Vector Machine (PSO- SVM) to overcome these problems. First, we finish the preliminary human tracking step in several frames based on some filters such as particle filter and kalman filter. Second, for each newly come frame need to be processed, we use the proposed PSO-SVM to process the previous frames as a regression frame work, based on this regression frame work, an estimated location of the target will be calculated out. Third, we process the newly come frame based on the particle filter and calculate out the target location as the basic target location. Finally, based on comparison analysis between basic target location and estimated target location, we can get the tracked target location. Experiment results on several videos will show the effectiveness and robustness of the proposed method.
引用
收藏
页码:457 / 470
页数:14
相关论文
共 50 条
  • [11] Sliding Mode Control Based on Particle Swarm Optimization and Support Vector Machine
    Liu, Mingdan
    Chen, Zhimei
    Sun, Zhebin
    2011 9TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2011), 2011, : 260 - 264
  • [12] Support Vector Machine and Particle Swarm Optimization Based Classification of Ovarian Tumour
    Srilatha, K.
    Ulagamuthalvi, V
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2019, 12 (03): : 714 - 719
  • [13] Face recognition method based on support vector machine and particle swarm optimization
    Jin Wei
    Zhang Jian-qi
    Zhang Xiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 4390 - 4393
  • [14] Power Load Forecasting Based on Support Vector Machine and Particle Swarm Optimization
    Ren, Guanghua
    Wen, Shiping
    Yan, Zheng
    Hu, Rui
    Zeng, Zhigang
    Cao, Yuting
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2003 - 2008
  • [15] Support Vector Machine Based on Chaos Particle Swarm Optimization for Lightning Prediction
    Tang, Xianlun
    Zhuang, Ling
    Gao, Yanghua
    ADVANCES IN COMPUTER SCIENCE, INTELLIGENT SYSTEM AND ENVIRONMENT, VOL 1, 2011, 104 : 727 - +
  • [16] A particle swarm optimization based support vector machine for digital communication equalizers
    Li, Zey-Ou
    Li, Chi-Wen
    Chien, Ying-Ren
    WSEAS Transactions on Signal Processing, 2014, 10 (01): : 95 - 105
  • [17] Support vector machine parameter tuning based on particle swarm optimization metaheuristic
    Korovkinas, Konstantinas
    Danenas, Paulius
    Garsva, Gintautas
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (02): : 266 - 281
  • [18] Face Recognition based on Opposition Particle Swarm Optimization and Support Vector machine
    Hasan, Mohammed
    Abdullah, Siti Norul Huda Sheikh
    Othman, Zulaiha Ali
    2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2013), 2013, : 417 - 424
  • [19] Parameters Optimization for Nonparallel Support Vector Machine by Particle Swarm Optimization
    Bamakan, Seyed Mojtaba Hosseini
    Wang, Huadong
    Ravasan, Ahad Zare
    PROMOTING BUSINESS ANALYTICS AND QUANTITATIVE MANAGEMENT OF TECHNOLOGY: 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2016), 2016, 91 : 482 - 491
  • [20] Particle Swarm Optimization for Parameter Optimization of Support Vector Machine Model
    Lu, Ning
    Zhou, Jianzhong
    He, Yaoyao
    Liu, Ying
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 283 - 286