Simulating Solar Coronal Mass Ejections Constrained by Observations of Their Speed and Poloidal Flux

被引:11
|
作者
Singh, T. [1 ]
Yalim, M. S. [2 ]
Pogorelov, N. V. [1 ,2 ]
Gopalswamy, N. [3 ]
机构
[1] Univ Alabama, Dept Space Sci, Huntsville, AL 35805 USA
[2] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
magnetohydrodynamics (MHD); methods: data analysis; methods: numerical; solar wind; Sun: corona; Sun: coronal mass ejections (CMEs); CME; RECONSTRUCTION; MODEL; WIND; FLOW;
D O I
10.3847/2041-8213/ab14e9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We demonstrate how the parameters of a Gibson-Low flux-rope-based coronal mass ejection (CME) can be constrained using remote observations. Our Multi-Scale Fluid-Kinetic Simulation Suite has been used to simulate the propagation of a CME in a data-driven solar corona background computed using the photospheric magnetogram data. We constrain the CME model parameters using the observations of such key CME properties as its speed, orientation, and poloidal flux. The speed and orientation are estimated using multi-viewpoint white-light coronagraph images. The reconnected magnetic flux in the area covered by the post-eruption arcade is used to estimate the poloidal flux in the CME flux rope. We simulate the partial halo CME on 2011 March 7 to demonstrate the efficiency of our approach. This CME erupted with the speed of 812 km s(-1) and its poloidal flux, as estimated from source active region data, was 4.9 x 10(21) Mx. Using our approach, we were able to simulate this CME with the speed 840 km s(-1) and the poloidal flux of 5.1 x 10(21) Mx, in remarkable agreement with the observations.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Modeling of flux rope coronal mass ejections
    Thernisien, A. F. R.
    Howard, R. A.
    Vourlidas, A.
    ASTROPHYSICAL JOURNAL, 2006, 652 (01): : 763 - 773
  • [32] Observations and simulations of stellar coronal mass ejections
    Tian H.
    Xu Y.
    Chen H.
    Zhang J.
    Lu H.
    Chen Y.
    Yang Z.
    Wu Y.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53 (12): : 2021 - 2038
  • [33] EUV and coronagraphic observations of coronal mass ejections
    Tripathi, Durgesh
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2006, 27 (2-3) : 193 - 200
  • [34] The acceleration of slow coronal mass ejections in the high-speed solar wind
    Gosling, JT
    Riley, P
    GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (21) : 2867 - 2870
  • [35] Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux – CME Mass Correlation
    A. N. Aarnio
    K. G. Stassun
    W. J. Hughes
    S. L. McGregor
    Solar Physics, 2011, 268 : 195 - 212
  • [36] EUV and coronagraphic observations of coronal mass ejections
    Durgesh Tripathi
    Journal of Astrophysics and Astronomy, 2006, 27 : 193 - 200
  • [37] Solar origins of interplanetary coronal mass ejections
    Harra, Louise K.
    NEW SOLAR PHYSICS WITH SOLAR-B MISSION, 2007, 369 : 511 - 522
  • [38] On the Origin of Solar Halo Coronal Mass Ejections
    Verma, V. K.
    Mittal, Nishant
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2019, 45 (03): : 164 - 176
  • [39] THE SOURCE REGIONS OF SOLAR CORONAL MASS EJECTIONS
    HARRISON, RA
    SOLAR PHYSICS, 1990, 126 (01) : 185 - 193
  • [40] Coronal mass ejections: Relationship with solar flares and coronal holes
    Verma, VK
    MULTI-WAVELENGTH OBSERVATIONS OF CORONAL STRUCTURE AND DYNAMICS, 2002, 13 : 319 - 320