Kinematics Parameters Identification for IRB 1400 Using Improved Quantum Behaved Particle Swarm Optimization

被引:3
|
作者
Wang, Fengliang [1 ]
Wang, Yali [1 ]
Li, Jie [1 ]
Fang, Wei [2 ]
机构
[1] Tianjin Univ Technol, Zhonghuan Informat Coll, Tianjin, Peoples R China
[2] COMAC, Beijing Aeronaut Sci & Technol Res Inst, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS | 2016年 / 386卷
关键词
Kinematics parameter errors; Quantum behaved particle swarm optimization; Robot positioning accuracy; ACCURACY;
D O I
10.1007/978-3-662-49831-6_91
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an improved quantum behaved particle swarm optimization (IQPSO) algorithm to identify the robot kinematics parameter errors to improve the absolute accuracy of serial robots. The IQPSO algorithm is based on the quantum behaved particle swarm optimization (QPSO) algorithm. To improve the convergence speed, in the IQPSO algorithm, each dimension of the global best position is kept to be the best at each iterative process by comparing each dimension with the pre-value in the last iterative process. Comparing the IQPSO algorithm with least squared algorithm, the absolute accuracy of the robot can be improved 200 %. And compared with the standard particle swarm optimization (SPSO) algorithm and QPSO algorithm, the convergence speed is improved about 200 %. So the proposed algorithm can effectively identify the robot kinematics parameter errors.
引用
收藏
页码:881 / 890
页数:10
相关论文
共 50 条
  • [21] Visual Tracking Using Quantum-Behaved Particle Swarm Optimization
    Sun, Bo
    Wang, Baoyun
    Shi, Yujiao
    Gao, Hao
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 3844 - 3851
  • [22] A modified Quantum-behaved Particle Swarm Optimization
    Sun, Jun
    Lai, C. -H.
    Xu, Wenbo
    Ding, Yanrui
    Chai, Zhilei
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 294 - +
  • [23] Parallel quantum-behaved particle swarm optimization
    Tian, Na
    Lai, Choi-Hong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2014, 5 (02) : 309 - 318
  • [24] A Quantum Behaved Particle Swarm Optimization with a Chaotic Operator
    Li, Mingming
    Cao, Dandan
    Gao, Hao
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 212 - 218
  • [25] An improved quantum-behaved particle swarm optimization for multi-peak optimization problems
    Zhao, Ji
    Sun, Jun
    Lai, Choi-Hong
    Xu, Wenbo
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (03) : 517 - 532
  • [26] A Review of Quantum-behaved Particle Swarm Optimization
    Fang, Wei
    Sun, Jun
    Ding, Yanrui
    Wu, Xiaojun
    Xu, Wenbo
    IETE TECHNICAL REVIEW, 2010, 27 (04) : 336 - 348
  • [27] Parallel quantum-behaved particle swarm optimization
    Na Tian
    Choi-Hong Lai
    International Journal of Machine Learning and Cybernetics, 2014, 5 : 309 - 318
  • [28] An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization
    Yang, Zhen-Lun
    Wu, Angus
    Min, Hua-Qing
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [29] Test Case Prioritization, Selection, and Reduction Using Improved Quantum-Behaved Particle Swarm Optimization
    Bajaj, Anu
    Abraham, Ajith
    Ratnoo, Saroj
    Gabralla, Lubna Abdelkareim
    SENSORS, 2022, 22 (12)
  • [30] Research on IDS Alert Aggregation Based on Improved Quantum behaved Particle Swarm Optimization
    Zhang, Jing
    Yu, Bin
    Li, Jun-Quan
    COMPUTER SCIENCE AND TECHNOLOGY (CST2016), 2017, : 293 - 299