Kinematics Parameters Identification for IRB 1400 Using Improved Quantum Behaved Particle Swarm Optimization

被引:3
|
作者
Wang, Fengliang [1 ]
Wang, Yali [1 ]
Li, Jie [1 ]
Fang, Wei [2 ]
机构
[1] Tianjin Univ Technol, Zhonghuan Informat Coll, Tianjin, Peoples R China
[2] COMAC, Beijing Aeronaut Sci & Technol Res Inst, Beijing, Peoples R China
关键词
Kinematics parameter errors; Quantum behaved particle swarm optimization; Robot positioning accuracy; ACCURACY;
D O I
10.1007/978-3-662-49831-6_91
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an improved quantum behaved particle swarm optimization (IQPSO) algorithm to identify the robot kinematics parameter errors to improve the absolute accuracy of serial robots. The IQPSO algorithm is based on the quantum behaved particle swarm optimization (QPSO) algorithm. To improve the convergence speed, in the IQPSO algorithm, each dimension of the global best position is kept to be the best at each iterative process by comparing each dimension with the pre-value in the last iterative process. Comparing the IQPSO algorithm with least squared algorithm, the absolute accuracy of the robot can be improved 200 %. And compared with the standard particle swarm optimization (SPSO) algorithm and QPSO algorithm, the convergence speed is improved about 200 %. So the proposed algorithm can effectively identify the robot kinematics parameter errors.
引用
收藏
页码:881 / 890
页数:10
相关论文
共 50 条
  • [1] Improved Quantum behaved particle swarm optimization algorithm
    Li, ShuJiang
    Xuan, PengHui
    Wang, XiangDong
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 774 - 776
  • [2] Parameters identification of chaotic systems by quantum-behaved particle swarm optimization
    Yang, Kaiqiao
    Maginu, Kenjiro
    Nomura, Hirosato
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (12) : 2225 - 2235
  • [3] An improved quantum-behaved particle swarm optimization algorithm
    Panchi Li
    Hong Xiao
    Applied Intelligence, 2014, 40 : 479 - 496
  • [4] An Improved Quantum-Behaved Particle Swarm Optimization Algorithm
    Yang, Jie
    Xie, Jiahua
    2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 2, 2010, : 159 - 162
  • [5] An improved quantum-behaved particle swarm optimization algorithm
    Li, Panchi
    Xiao, Hong
    APPLIED INTELLIGENCE, 2014, 40 (03) : 479 - 496
  • [6] An improved cooperative quantum-behaved particle swarm optimization
    Li, Yangyang
    Xiang, Rongrong
    Jiao, Licheng
    Liu, Ruochen
    SOFT COMPUTING, 2012, 16 (06) : 1061 - 1069
  • [7] An improved cooperative quantum-behaved particle swarm optimization
    Yangyang Li
    Rongrong Xiang
    Licheng Jiao
    Ruochen Liu
    Soft Computing, 2012, 16 : 1061 - 1069
  • [8] Operating Parameters Optimization for the Aluminum Electrolysis Process Using an Improved Quantum-Behaved Particle Swarm Algorithm
    Yi, Jun
    Bai, Junren
    Zhou, Wei
    He, Haibo
    Yao, Lizhong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (08) : 3405 - 3415
  • [9] Application of Online System Identification Based on Improved Quantum-behaved Particle Swarm Optimization
    Zhao, Ji
    Sun, Jun
    Xu, Wenbo
    SECOND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 2, PROCEEDINGS, 2009, : 186 - 189
  • [10] A New Improved Quantum-behaved Particle Swarm Optimization Model
    Huang, Zhen
    Wang, Yongji
    Yang, Chuanjiang
    Wu, Chaozhong
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 1551 - +