Single index regression models in the presence of censoring depending on the covariates

被引:14
|
作者
Lopez, Olivier [1 ]
Patilea, Valentin [2 ]
Van Keilegom, Ingrid [3 ]
机构
[1] Univ Paris 06, Lab Stat Theor & Appl, F-75005 Paris, France
[2] CREST Ensai & IRMAR, F-35172 Bruz, France
[3] Catholic Univ Louvain, Inst Stat, B-1348 Louvain, Belgium
基金
欧洲研究理事会;
关键词
curse-of-dimensionality; dimension reduction; multivariate distribution; right censoring; semiparametric regression; survival analysis; SEMIPARAMETRIC ESTIMATION; MULTIPLE-REGRESSION; U-PROCESSES; UNIFORM;
D O I
10.3150/12-BEJ464
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a random vector (X', Y')', where X is d-dimensional and Y is one-dimensional. We assume that Y is subject to random right censoring. The aim of this paper is twofold. First, we propose a new estimator of the joint distribution of (X', Y')'. This estimator overcomes the common curse-of-dimensionality problem, by using a new dimension reduction technique. Second, we assume that the relation between X and Y is given by a mean regression single index model, and propose a new estimator of the parameters in this model. The asymptotic properties of all proposed estimators are obtained.
引用
收藏
页码:721 / 747
页数:27
相关论文
共 50 条