Dynamical behaviours and exact travelling wave solutions of modified generalized Vakhnenko equation

被引:2
|
作者
Xiao, Junjun [1 ]
Feng, Dahe [1 ,2 ]
Meng, Xia [1 ]
Cheng, Yuanquan [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 88卷 / 01期
基金
中国国家自然科学基金;
关键词
Modified generalized Vakhnenko equation; cusped solitons; loop solitons; periodic cusp wave solutions; smooth periodic wave solutions; pseudopeakon solitons; smooth soliton solutions; SOLITON SOLUTION; EVOLUTION;
D O I
10.1007/s12043-016-1321-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the bifurcation theory of planar dynamical systems and the qualitative theory of differential equations, we studied the dynamical behaviours and exact travelling wave solutions of the modified generalized Vakhnenko equation (mGVE). As a result, we obtained all possible bifurcation parametric sets and many explicit formulas of smooth and non-smooth travelling waves such as cusped solitons, loop solitons, periodic cusp waves, pseudopeakon solitons, smooth periodic waves and smooth solitons. Moreover, we provided some numerical simulations of these solutions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Symbolic analysis and exact travelling wave solutions to a new modified Novikov equation
    Zhao, Lei
    Zhou, Shuigeng
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) : 590 - 598
  • [22] Propagation of traveling wave solutions to the Vakhnenko-Parkes dynamical equation via modified mathematical methods
    Aly R.Seadawy
    Asghar Ali
    Wafaa A.Albarakati
    Dumitru Baleanu
    AppliedMathematics:AJournalofChineseUniversities, 2022, 37 (01) : 21 - 34
  • [23] Propagation of traveling wave solutions to the Vakhnenko-Parkes dynamical equation via modified mathematical methods
    Seadawy, Aly R.
    Ali, Asghar
    Albarakati, Wafaa A.
    Baleanu, Dumitru
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2022, 37 (01) : 21 - 34
  • [24] Travelling Wave Solutions for Generalized Fisher Equation
    Wang Shubin (Zhengzhou University of Technology
    数学季刊, 1998, (03) : 102 - 110
  • [25] Travelling wave solutions of generalized PC equation
    Liu, Zheng-Rong
    Song, Ming
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 1530 - 1533
  • [26] BIFURCATIONS OF EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED R-K-L EQUATION
    Zhang, Jianming
    Li, Shuming
    Geng, Hongpeng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 1205 - 1210
  • [27] Propagation of traveling wave solutions to the Vakhnenko-Parkes dynamical equation via modified mathematical methods
    Aly R. Seadawy
    Wafaa A. Albarakati
    Asghar Ali
    Dumitru Baleanu
    Applied Mathematics-A Journal of Chinese Universities, 2022, 37 : 21 - 34
  • [28] New exact travelling wave solutions for the Ostrovsky equation
    Kangalgil, Figen
    Ayaz, Fatma
    PHYSICS LETTERS A, 2008, 372 (11) : 1831 - 1835
  • [29] New exact travelling wave solutions to Kundu equation
    Huang, DJ
    Li, DS
    Zhang, HQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (06) : 969 - 976
  • [30] New Exact Travelling Wave Solutions to Kundu Equation
    HUANG Ding--Jiang
    LI De--Sheng
    ZHANG Hong--Qing Department of Applied Mathematics
    CommunicationsinTheoreticalPhysics, 2005, 44 (12) : 969 - 976