Dynamical behaviours and exact travelling wave solutions of modified generalized Vakhnenko equation

被引:2
|
作者
Xiao, Junjun [1 ]
Feng, Dahe [1 ,2 ]
Meng, Xia [1 ]
Cheng, Yuanquan [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 88卷 / 01期
基金
中国国家自然科学基金;
关键词
Modified generalized Vakhnenko equation; cusped solitons; loop solitons; periodic cusp wave solutions; smooth periodic wave solutions; pseudopeakon solitons; smooth soliton solutions; SOLITON SOLUTION; EVOLUTION;
D O I
10.1007/s12043-016-1321-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the bifurcation theory of planar dynamical systems and the qualitative theory of differential equations, we studied the dynamical behaviours and exact travelling wave solutions of the modified generalized Vakhnenko equation (mGVE). As a result, we obtained all possible bifurcation parametric sets and many explicit formulas of smooth and non-smooth travelling waves such as cusped solitons, loop solitons, periodic cusp waves, pseudopeakon solitons, smooth periodic waves and smooth solitons. Moreover, we provided some numerical simulations of these solutions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dynamical behaviours and exact travelling wave solutions of modified generalized Vakhnenko equation
    JUNJUN XIAO
    DAHE FENG
    XIA MENG
    YUANQUAN CHENG
    Pramana, 2017, 88
  • [2] A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method
    Ma, Yulan
    Li, Bangqing
    Wang, Cong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) : 102 - 107
  • [3] Dynamical survey of a generalized-Zakharov equation and its exact travelling wave solutions
    Betchewe, Gambo
    Thomas, Bouetou Bouetou
    Victor, Kuetche Kamgang
    Crepin, Kofane Timoleon
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (01) : 203 - 211
  • [4] Exact travelling wave solutions of the generalized Bretherton equation
    Romeiras, Filipe J.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) : 1791 - 1805
  • [5] Exact travelling wave solutions for the modified Novikov equation
    Deng, Xijun
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2015, 20 (02): : 226 - 232
  • [6] Exact travelling wave solutions for the generalized shallow water wave equation
    Elwakil, SA
    El-labany, SK
    Zahran, MA
    Sabry, R
    CHAOS SOLITONS & FRACTALS, 2003, 17 (01) : 121 - 126
  • [7] Exact travelling wave solutions for a generalized nonlinear Schrodinger equation
    Hizanidis, K
    Frantzeskakis, DJ
    Polymilis, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (23): : 7687 - 7703
  • [8] Exact travelling wave solutions for a generalized nonlinear Schroedinger equation
    Journal of Physics A: Mathematical and General, 29 (23):
  • [9] A direct method for constructing the traveling wave solutions of a modified generalized Vakhnenko equation
    Ma, Yu-Lan
    Li, Bang-Qing
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 2212 - 2219
  • [10] The Exact Travelling Wave Solutions of Generalized KdV-mKdV Equation
    Zhou, Yu
    Yu, Jicai
    Wang, Ying
    INTERNATIONAL CONFERENCE ON FRONTIERS OF ENERGY, ENVIRONMENTAL MATERIALS AND CIVIL ENGINEERING (FEEMCE 2013), 2013, : 538 - 543