Asymmetry of surface climate change under RCP2.6 projections from the CMIP5 models

被引:10
|
作者
Xin Xiaoge [1 ]
Cheng Yanjie [1 ]
Wang Fang [1 ]
Wu Tongwen [1 ]
Zhang Jie [1 ]
机构
[1] China Meteorol Adm, Beijing Climate Ctr, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
climate models; climate change; projection; CMIP5; RCP2.6; PART II; OCEAN; AMPLIFICATION; INCREASE;
D O I
10.1007/s00376-012-2151-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative concentration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86A degrees C relative to the pre-industrial level, achieving the target to limit the global warming to 2A degrees C. Associated with the "increase-peak-decline" greenhouse gases (GHGs) concentration pathway of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006-55 and cooling during 2056-2100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cooling period. The warming during 2006-55 is distributed globally, while the cooling during 2056-2100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period.
引用
收藏
页码:796 / 805
页数:10
相关论文
共 50 条
  • [31] Alteration of hydrologic indicators for Korean catchments under CMIP5 climate projections
    Shin, Mun-Ju
    Eum, Hyung-Il
    Kim, Chung-Soo
    Jung, Il-Won
    HYDROLOGICAL PROCESSES, 2016, 30 (24) : 4517 - 4542
  • [32] Probabilistic Projections of Precipitation Change Over China Based on CMIP5 Models
    Shen, Yuchen
    Jiang, Xiaofei
    Hang, Yuehe
    2014 INTERNATIONAL CONFERENCE ON GIS AND RESOURCE MANAGEMENT (ICGRM), 2014, : 445 - 452
  • [33] Climate change projections over China using regional climate models forced by two CMIP5 global models. Part II: projections of future climate
    Hui, Pinhong
    Tang, Jianping
    Wang, Shuyu
    Niu, Xiaorui
    Zong, Peishu
    Dong, Xinning
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 : E78 - E94
  • [34] Climate change projections of boreal summer precipitation over tropical America by using statistical downscaling from CMIP5 models
    Palomino-Lemus, Reiner
    Cordoba-Machado, Samir
    Raquel Gamiz-Fortis, Sonia
    Castro-Diez, Yolanda
    Jesus Esteban-Parra, Maria
    ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (12):
  • [35] Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
    J.-L. Dufresne
    M.-A. Foujols
    S. Denvil
    A. Caubel
    O. Marti
    O. Aumont
    Y. Balkanski
    S. Bekki
    H. Bellenger
    R. Benshila
    S. Bony
    L. Bopp
    P. Braconnot
    P. Brockmann
    P. Cadule
    F. Cheruy
    F. Codron
    A. Cozic
    D. Cugnet
    N. de Noblet
    J.-P. Duvel
    C. Ethé
    L. Fairhead
    T. Fichefet
    S. Flavoni
    P. Friedlingstein
    J.-Y. Grandpeix
    L. Guez
    E. Guilyardi
    D. Hauglustaine
    F. Hourdin
    A. Idelkadi
    J. Ghattas
    S. Joussaume
    M. Kageyama
    G. Krinner
    S. Labetoulle
    A. Lahellec
    M.-P. Lefebvre
    F. Lefevre
    C. Levy
    Z. X. Li
    J. Lloyd
    F. Lott
    G. Madec
    M. Mancip
    M. Marchand
    S. Masson
    Y. Meurdesoif
    J. Mignot
    Climate Dynamics, 2013, 40 : 2123 - 2165
  • [36] Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
    Dufresne, J-L.
    Foujols, M-A.
    Denvil, S.
    Caubel, A.
    Marti, O.
    Aumont, O.
    Balkanski, Y.
    Bekki, S.
    Bellenger, H.
    Benshila, R.
    Bony, S.
    Bopp, L.
    Braconnot, P.
    Brockmann, P.
    Cadule, P.
    Cheruy, F.
    Codron, F.
    Cozic, A.
    Cugnet, D.
    de Noblet, N.
    Duvel, J-P.
    Ethe, C.
    Fairhead, L.
    Fichefet, T.
    Flavoni, S.
    Friedlingstein, P.
    Grandpeix, J-Y.
    Guez, L.
    Guilyardi, E.
    Hauglustaine, D.
    Hourdin, F.
    Idelkadi, A.
    Ghattas, J.
    Joussaume, S.
    Kageyama, M.
    Krinner, G.
    Labetoulle, S.
    Lahellec, A.
    Lefebvre, M-P.
    Lefevre, F.
    Levy, C.
    Li, Z. X.
    Lloyd, J.
    Lott, F.
    Madec, G.
    Mancip, M.
    Marchand, M.
    Masson, S.
    Meurdesoif, Y.
    Mignot, J.
    CLIMATE DYNAMICS, 2013, 40 (9-10) : 2123 - 2165
  • [37] Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries
    Pattnayak, K. C.
    Kar, S. C.
    Dalal, Mamta
    Pattnayak, R. K.
    GLOBAL AND PLANETARY CHANGE, 2017, 152 : 152 - 166
  • [38] ENSO representation in climate models: from CMIP3 to CMIP5
    Bellenger, H.
    Guilyardi, E.
    Leloup, J.
    Lengaigne, M.
    Vialard, J.
    CLIMATE DYNAMICS, 2014, 42 (7-8) : 1999 - 2018
  • [39] Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models
    Sharmila, S.
    Joseph, S.
    Sahai, A. K.
    Abhilash, S.
    Chattopadhyay, R.
    GLOBAL AND PLANETARY CHANGE, 2015, 124 : 62 - 78
  • [40] Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections
    Ahlstrom, A.
    Schurgers, G.
    Arneth, A.
    Smith, B.
    ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (04):