Some characterizations of local bmo and h1 on metric measure spaces

被引:13
|
作者
Dafni, Galia [1 ]
Yue, Hong [2 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
[2] Georgia Coll, Dept Math, Milledgeville, GA 31061 USA
基金
加拿大自然科学与工程研究理事会;
关键词
HARDY-SPACES; DECOMPOSITION; INEQUALITIES; LEMMAS;
D O I
10.1007/s13324-012-0034-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study, in the setting of a doubling metric measure space, the local bmo space and Hardy space h(1) defined by Goldberg. We state a John-Nirenberg type inequality for the local bmo space and give two proofs, via a good-lambda inequality and via duality. We also prove the boundedness of the Hardy-Littlewood maximal function from bmo to bmo. Finally, we give characterizations of bmo and h(1) using alternative mean-oscillation and moment conditions.
引用
收藏
页码:285 / 318
页数:34
相关论文
共 50 条