On quasi-Newton methods with modified quasi-Newton equation

被引:0
|
作者
Xiao, Wei [1 ]
Sun, Fengjian [1 ]
机构
[1] Nanjing Univ Sci & Technol, Fac Sci, Nanjing 210094, Peoples R China
关键词
Unconstrained optimization; Quasi-Newton methods; modified quasi-Newton equation; BGFS type algorithms; Global convergence; Superlinear convergence;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is known that the quasi-Newton methods are one of the most effective techniques for the solution of unconstrained optimization. Under modification of conventional quasi-Newton equation to make full use of known information like the objective function value, this paper presents three BFGS type algorithms, which have almost the same efficiencies as that of Zhang([6]) and We(1[7]). These modified quasi-Newton methods are globally convergent and possesses superlinear convergence.
引用
收藏
页码:359 / 363
页数:5
相关论文
共 50 条
  • [21] QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION
    TAPIA, R
    SIAM REVIEW, 1976, 18 (04) : 830 - 830
  • [22] Quasi-Newton methods for image restoration
    Nagy, J
    Palmer, K
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XIV, 2004, 5559 : 412 - 422
  • [23] Machine Learning in Quasi-Newton Methods
    Krutikov, Vladimir
    Tovbis, Elena
    Stanimirovic, Predrag
    Kazakovtsev, Lev
    Karabasevic, Darjan
    AXIOMS, 2024, 13 (04)
  • [24] OPTIMAL CONDITIONING OF QUASI-NEWTON METHODS
    SHANNO, DF
    KETTLER, PC
    MATHEMATICS OF COMPUTATION, 1970, 24 (111) : 657 - &
  • [25] Quasi-Newton methods for stochastic optimization
    Levy, MN
    Trosset, MW
    Kincaid, RR
    ISUMA 2003: FOURTH INTERNATIONAL SYMPOSIUM ON UNCERTAINTY MODELING AND ANALYSIS, 2003, : 304 - 309
  • [26] MULTISTEP QUASI-NEWTON METHODS FOR OPTIMIZATION
    FORD, JA
    MOGHRABI, IA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 50 (1-3) : 305 - 323
  • [27] QUASI-NEWTON METHODS, MOTIVATION AND THEORY
    DENNIS, JE
    MORE, JJ
    SIAM REVIEW, 1977, 19 (01) : 46 - 89
  • [28] Structure of Quasi-Newton Minimization Methods
    Vetoshkin, A. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (05) : 778 - 791
  • [29] Quasi-Newton Methods: A New Direction
    Hennig, Philipp
    Kiefel, Martin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 843 - 865
  • [30] CANCELLATION ERRORS IN QUASI-NEWTON METHODS
    FLETCHER, R
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (04): : 1387 - 1399