An algorithm to check the equality of total domination number and double of domination number in graphs

被引:1
|
作者
Bahadir, Selim [1 ]
机构
[1] Ankara Yildirim Beyazit Univ, Fac Engn & Nat Sci, Dept Math, Ankara, Turkey
关键词
Domination number; total domination number;
D O I
10.3906/mat-2001-58
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In graph theory, domination number and its variants such as total domination number are studied by many authors. Let the domination number and the total domination number of a graph G without isolated vertices be gamma(G) and gamma(t)(G), respectively. Based on the inequality gamma(t)(G) <= 2 gamma(G), we investigate the graphs satisfying the upper bound, that is, graphs G with gamma(t)(G) = 2 gamma(G). In this paper, we present some new properties of such graphs and provide an algorithm which can determine whether gamma(t)(G) = 2 gamma(G) or not for a family of graphs not covered by the previous results in the literature.
引用
收藏
页码:1701 / 1707
页数:7
相关论文
共 50 条
  • [31] On the total domination number of cross products of graphs
    Ei-Zahar, Mohamed
    Gravier, Sylvain
    Klobucar, Antoaneta
    DISCRETE MATHEMATICS, 2008, 308 (10) : 2025 - 2029
  • [32] Graphs with Large Disjunctive Total Domination Number
    Henning, Michael A.
    Naicker, Viroshan
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 255 - 282
  • [33] FAIR TOTAL DOMINATION NUMBER IN CACTUS GRAPHS
    Hajian, Majid
    Rad, Nader Jafari
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 647 - 664
  • [34] On a class of graphs with large total domination number
    Bahadir, Selim
    Gözüpek, Didem
    Discrete Mathematics and Theoretical Computer Science, 2018, 20 (01):
  • [35] ON THE TOTAL k-DOMINATION NUMBER OF GRAPHS
    Kazemi, Adel P.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 419 - 426
  • [36] ON GRUNDY TOTAL DOMINATION NUMBER IN PRODUCT GRAPHS
    Bresar, Bostjan
    Bujtas, Csilla
    Gologranc, Tanja
    Klavzar, Sandi
    Kosmrlj, Gasper
    Marc, Tilen
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 225 - 247
  • [37] On the Total Domination Number of Cartesian Products of Graphs
    Michael A. Henning
    Douglas F. Rall
    Graphs and Combinatorics, 2005, 21 : 63 - 69
  • [38] On the total domination number of Cartesian products of graphs
    Henning, MA
    Rall, DF
    GRAPHS AND COMBINATORICS, 2005, 21 (01) : 63 - 69
  • [39] Disjunctive Total Domination Subdivision Number of Graphs
    Ciftci, Canan
    Aytac, Vecdi
    FUNDAMENTA INFORMATICAE, 2020, 174 (01) : 15 - 26
  • [40] On the independence transversal total domination number of graphs
    Cabrera Martinez, Abel
    Sigarreta Almira, Jose M.
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2017, 219 : 65 - 73