On stable cutsets in claw-free graphs and planar graphs

被引:0
|
作者
Le, VB [1 ]
Mosca, R
Müller, H
机构
[1] Univ Rostock, Inst Informat, D-18051 Rostock, Germany
[2] Univ G DAnnunzio, Dipartimento Sci, I-65127 Pescara, Italy
[3] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
来源
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE | 2005年 / 3787卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To decide whether a line graph (hence a claw-free graph) of maximum degree five admits a stable cutset has been proven to be an NP-complete problem. The same result has been known for K-4-free graphs. Here we show how to decide this problem in polynomial time for (claw, K-4)-free graphs and for a claw-free graph of maximum degree at most four. As a by-product we prove that the stable cutset problem is polynomially solvable for claw-free planar graphs, and for planar line graphs. Now, the computational complexity of the stable cutset problem restricted to claw-free graphs and claw-free planar graphs is known for all bounds on the maximum degree. Moreover, we prove that the stable cutset problem remains NP-complete for K-4-free planar graphs of maximum degree five.
引用
收藏
页码:163 / 174
页数:12
相关论文
共 50 条
  • [11] Pancyclism in Claw-free Graphs
    陆玫
    俞正光
    Tsinghua Science and Technology, 1998, (04) : 1218 - 1220
  • [12] Triangles in claw-free graphs
    Wang, H
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 233 - 244
  • [13] FACTORS OF CLAW-FREE GRAPHS
    LONC, Z
    RYJACEK, Z
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1991, 41 (01) : 120 - 130
  • [14] Minimal claw-free graphs
    Dankelmann, P.
    Swart, Henda C.
    van den Berg, P.
    Goddard, W.
    Plummer, M. D.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (03) : 787 - 798
  • [15] CIRCUMFERENCES OF CLAW-FREE GRAPHS
    SUN Zhiren
    WU Zhengsheng (School of Mathematics and Computer Science
    Systems Science and Mathematical Sciences, 2000, (02) : 225 - 225
  • [16] ON HAMILTONIAN CLAW-FREE GRAPHS
    FLANDRIN, E
    FOUQUET, JL
    LI, H
    DISCRETE MATHEMATICS, 1993, 111 (1-3) : 221 - 229
  • [17] Minimal claw-free graphs
    P. Dankelmann
    Henda C. Swart
    P. van den Berg
    W. Goddard
    M. D. Plummer
    Czechoslovak Mathematical Journal, 2008, 58
  • [18] ALMOST CLAW-FREE GRAPHS
    RYJACEK, Z
    JOURNAL OF GRAPH THEORY, 1994, 18 (05) : 469 - 477
  • [19] Equimatchable claw-free graphs
    Akbari, Saieed
    Alizadeh, Hadi
    Ekim, Tinaz
    Gozupek, Didem
    Shalom, Mordechai
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2859 - 2871
  • [20] Claw-free graphs - A survey
    Department of Mathematical Sciences, Memphis State University, Memphis, TN 38152, United States
    不详
    不详
    Discrete Math, 1-3 (87-147):