3-VARIABLE ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

被引:0
|
作者
Jung, Joonhyuk [1 ]
Lee, Junehyeok [1 ]
Anastassiou, George A. [2 ]
Park, Choonkil [3 ]
机构
[1] Seoul Sci High Sch, Math Branch, Seoul 110530, South Korea
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
关键词
Hyers-Ulam stability; additive rho-functional inequality; fuzzy normed space; ASTERISK-HOMOMORPHISMS; STABILITY; SUPERSTABILITY; DERIVATIONS; EQUATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce and investigate the following additive rho-functional in-equalities N(f (x + y + z) - f (x) - f (y) - f (z), t) >= N (rho (2f (x + y/2 + z) - f (x) - f (y) - 2f(z)) , t), N (2f (x + y + z) - f (x) - f (y) - 2f (z), t) >= N (rho (2f (x + y + z/2) - f (x) - f (y) - f (z)) , t), N(f (x + y + z) - f(x) - f(y) - f (z), t) >= N (rho(2f (x + y + z/2) - f (x) - f (y) - f (z)) , t) in fuzzy normed spaces. Furthermore, we prove the Hyers-Ulam stability of the above additive rho-functional inequalities in fuzzy Banach spaces.
引用
收藏
页码:684 / 698
页数:15
相关论文
共 50 条