Results on the domination number and the total domination number of Lucas cubes

被引:1
|
作者
Saygi, Zulfukar [1 ]
机构
[1] TOBB Univ Econ & Technol, Dept Math, Ankara, Turkey
关键词
Lucas cube; Fibonacci cube; domination number; total domination number; integer linear programming; FIBONACCI CUBES;
D O I
10.26493/1855-3974.2028.cb4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lucas cubes are special subgraphs of Fibonacci cubes. For small dimensions, their domination numbers are obtained by direct search or integer linear programming. For larger dimensions some bounds on these numbers are given. In this work, we present the exact values of total domination number of small dimensional Lucas cubes and present optimization problems obtained from the degree information of Lucas cubes, whose solutions give better lower bounds on the domination numbers and total domination numbers of Lucas cubes.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [31] The total global domination number of a graph
    Kulli, VR
    Janakiram, B
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (06): : 537 - 542
  • [32] Upper Bounds on the Total Domination Number
    Haynes, Teresa W.
    Henning, Michael A.
    ARS COMBINATORIA, 2009, 91 : 243 - 256
  • [33] TOTAL DOMINATION NUMBER OF CENTRAL GRAPHS
    Kazemnejad, Farshad
    Moradi, Somayeh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 1059 - 1075
  • [34] Total domination number of grid graphs
    Gravier, S
    DISCRETE APPLIED MATHEMATICS, 2002, 121 (1-3) : 119 - 128
  • [35] Graphs with large total domination number
    Henning, MA
    JOURNAL OF GRAPH THEORY, 2000, 35 (01) : 21 - 45
  • [36] On the ratio of the domination number and the independent domination number in graphs
    Furuya, Michitaka
    Ozeki, Kenta
    Sasaki, Akinari
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 157 - 159
  • [37] On the total Roman domination number of graphs
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Sheikholeslami, S. M.
    Soroudi, M.
    ARS COMBINATORIA, 2020, 150 : 225 - 240
  • [38] TOTAL DOMINATION NUMBER OF CENTRAL TREES
    Chen, Xue-Gang
    Sohn, Moo Young
    Wang, Yu-Feng
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 245 - 250
  • [39] Signed total domination number of a graph
    Zelinka, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (02) : 225 - 229
  • [40] Trees with large total domination number
    Henning, MA
    UTILITAS MATHEMATICA, 2001, 60 : 99 - 106