Graph Contexts for Retrieving Deformable Non-rigid 3D Shapes

被引:0
|
作者
Kuang, Zhenzhong [1 ]
Li, Zongmin [1 ]
Jiang, Xiaxia [1 ]
Liu, Yujie [1 ]
机构
[1] China Univ Petr, Coll Comp & Commun Engn, Sch Geosci, Qingdao 266580, Peoples R China
关键词
DIFFUSION;
D O I
10.1109/ICPR.2014.486
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deformable non-rigid 3D shape retrieval plays an important role in various applications. Although there are many related works, their precision and robustness are not ideal. In this paper, we develop a novel retrieval method by using graph contexts, which consists of three steps. Initially, we evaluate the performance of spectral distances for deformable shape representation, which has not been studied in detail before. Then, we create a weighted L-2 distance for similarity measurement based on the spectra of Laplace-Beltrami operator. Finally, a new local graph diffusion method is introduced to reduce the mismatch error in feature space and the time cost of diffusion has reduced a lot simultaneously. Our experiment results on SHREC'11 Non-rigid dataset have reached the best reported retrieval performance '(MAP: 99.9%).
引用
收藏
页码:2820 / 2825
页数:6
相关论文
共 50 条
  • [41] Shape Retrieval of Non-rigid 3D Human Models
    D. Pickup
    X. Sun
    P. L. Rosin
    R. R. Martin
    Z. Cheng
    Z. Lian
    M. Aono
    A. Ben Hamza
    A. Bronstein
    M. Bronstein
    S. Bu
    U. Castellani
    S. Cheng
    V. Garro
    A. Giachetti
    A. Godil
    L. Isaia
    J. Han
    H. Johan
    L. Lai
    B. Li
    C. Li
    H. Li
    R. Litman
    X. Liu
    Z. Liu
    Y. Lu
    L. Sun
    G. Tam
    A. Tatsuma
    J. Ye
    International Journal of Computer Vision, 2016, 120 : 169 - 193
  • [42] Non-rigid 3D object retrieval using directional graph representation of wave kernel signature
    Mirloo, Mahsa
    Ebrahimnezhad, Hossein
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (06) : 6987 - 7011
  • [43] Non-rigid 3D object retrieval using directional graph representation of wave kernel signature
    Mahsa Mirloo
    Hossein Ebrahimnezhad
    Multimedia Tools and Applications, 2018, 77 : 6987 - 7011
  • [44] Hierarchical Matching of Non-rigid Shapes
    Raviv, Dan
    Dubrovina, Anastasia
    Kimmel, Ron
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, 2012, 6667 : 604 - 615
  • [45] Robust Consistent Correspondence Between 3D Non-Rigid Shapes Based On "Dual Shape-DNA"
    Wu, Huai-Yu
    Zha, Hongbin
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 587 - 594
  • [46] Rigid and non-rigid 3D shape classification based on 3D Hahn moments neural networks model
    Lakhili, Zouhir
    El Alami, Abdelmajid
    Mesbah, Abderrahim
    Berrahou, Aissam
    Qjidaa, Hassan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 38067 - 38090
  • [47] Rigid and non-rigid 3D shape classification based on 3D Hahn moments neural networks model
    Zouhir Lakhili
    Abdelmajid El Alami
    Abderrahim Mesbah
    Aissam Berrahou
    Hassan Qjidaa
    Multimedia Tools and Applications, 2022, 81 : 38067 - 38090
  • [48] Robust Non-Rigid Registration of 2D and 3D Graphs
    Serradell, Eduard
    Glowacki, Przemyslaw
    Kybic, Jan
    Moreno-Noguer, Francesc
    Fua, Pascal
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 996 - 1003
  • [49] Rigid and non-rigid 3D motion estimation from multiview image sequences
    Ploskas, N
    Simitopoulos, D
    Tzovaras, D
    Triantafyllidis, GA
    Strintzis, MG
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2003, 18 (03) : 185 - 202
  • [50] An evaluation of canonical forms for non-rigid 3D shape retrieval
    Pickup, David
    Liu, Juncheng
    Sun, Xianfang
    Rosin, Paul L.
    Martin, Ralph R.
    Cheng, Zhiquan
    Lian, Zhouhui
    Nie, Sipin
    Jin, Longcun
    Shamai, Gil
    Sahillioglu, Yusuf
    Kavan, Ladislav
    GRAPHICAL MODELS, 2018, 97 : 17 - 29