Common applications of next-generation sequencing technologies in genomic research

被引:25
|
作者
Lee, Chien-Yueh [1 ]
Chiu, Yu-Chiao [1 ]
Wang, Liang-Bo [2 ]
Kuo, Yu-Lun [3 ]
Chuang, Eric Y. [1 ,2 ,4 ]
Lai, Liang-Chuan [5 ]
Tsai, Mong-Hsun [6 ]
机构
[1] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei 110, Taiwan
[2] Natl Taiwan Univ, Dept Elect Engn, Taipei 110, Taiwan
[3] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 110, Taiwan
[4] Natl Taiwan Univ, Ctr Genom Med, Bioinformat & Biostat Core, Taipei 110, Taiwan
[5] Natl Taiwan Univ, Grad Inst Physiol, Taipei 110, Taiwan
[6] Natl Taiwan Univ, Inst Biotechnol, Taipei 110, Taiwan
关键词
Next-generation sequencing; DNA sequencing; RNA sequencing; small RNA sequencing; DIFFERENTIAL EXPRESSION ANALYSIS; SHORT DNA-SEQUENCES; RNA-SEQ; READ ALIGNMENT; PAIRED-END; IDENTIFICATION; TOOL; TRANSCRIPTOME; MICRORNAS; MIRNAS;
D O I
10.3978/j.issn.2218-676X.2013.02.09
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Next-generation sequencing (NGS) technologies have progressive advantages in terms of cost-effectiveness, unprecedented sequencing speed, high resolution and accuracy in genomic analyses. To date, these high-throughput sequencing technologies have been comprehensively applied in a variety of ways, such as whole genome sequencing, target sequencing, gene expression profiling, chromatin immunoprecipitation sequencing, and small RNA sequencing, to accelerate biological and biomedical research. However, the massive amount of data generated by NGS represents a great challenge. This article discusses the available applications of NGS technologies, presents guidelines for data processing pipelines, and makes suggestions for selecting suitable tools in genomics, transcriptomics and small RNA research.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [31] Enrichment of target sequences for next-generation sequencing applications in research and diagnostics
    Altmueller, Janine
    Budde, Birgit S.
    Nuernberg, Peter
    BIOLOGICAL CHEMISTRY, 2014, 395 (02) : 231 - 237
  • [32] Bioinformatics drives the applications of next-generation sequencing in translational biomedical research
    Tang, Haixu
    Zhao, Zhongming
    METHODS, 2015, 79-80 : 1 - 2
  • [33] Exploiting the potential of next-generation sequencing in genomic medicine
    Pinto, Anna Maria
    Ariani, Francesca
    Bianciardi, Laura
    Daga, Sergio
    Renieri, Alessandra
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2016, 16 (09) : 1037 - 1047
  • [34] Application of 'next-generation' sequencing technologies to microbial genetics
    MacLean, Daniel
    Jones, Jonathan D. G.
    Studholme, David J.
    NATURE REVIEWS MICROBIOLOGY, 2009, 7 (04) : 287 - 296
  • [35] Application of 'next-generation' sequencing technologies to microbial genetics
    Daniel MacLean
    Jonathan D. G. Jones
    David J. Studholme
    Nature Reviews Microbiology, 2009, 7 : 96 - 97
  • [36] Next-generation sequencing technologies and their impact on microbial genomics
    Forde, Brian M.
    O'Toole, Paul W.
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2013, 12 (05) : 440 - 453
  • [37] Next-Generation Sequencing Technologies in Blood Group Typing
    Fuerst, Daniel
    Tsamadou, Chrysanthi
    Neuchel, Christine
    Schrezenmeier, Hubert
    Mytilineos, Joannis
    Weinstock, Christof
    TRANSFUSION MEDICINE AND HEMOTHERAPY, 2020, 47 (01) : 4 - 13
  • [38] Assessing the Value of Next-Generation Sequencing Technologies: An Introduction
    Phillips, Kathryn A.
    VALUE IN HEALTH, 2018, 21 (09) : 1031 - 1032
  • [39] Applications of Next-Generation Sequencing to Horticultural Crops
    不详
    HORTSCIENCE, 2010, 45 (08) : S6 - S6
  • [40] Clinical Applications and Limitations of Next-Generation Sequencing
    Basho, Reva Kakkar
    Eterovic, Agda Karina
    Meric-Bernstam, Funda
    AMERICAN JOURNAL OF HEMATOLOGY-ONCOLOGY, 2015, 11 (03) : 17 - 22