Parameters Optimization of the Beam Cleanup System Based on Stochastic Parallel Gradient Descent Method

被引:0
|
作者
Wang Sanhong [1 ,2 ]
Cui Junfeng [2 ]
Ma Haotong [3 ]
Liang Yonghui [3 ]
Yu Qifeng [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp & Mat Engn, Changsha 410073, Hunan, Peoples R China
[2] Taiyuan Satellite Launch Ctr, Taiyuan 030027, Shanxi, Peoples R China
[3] Natl Univ Def Technol, College Opto Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
high-energy laser; beam cleanup; adaptive optics; stochastic parallel gradient descent; parameters optimization; ADAPTIVE OPTICS SYSTEM; COMPENSATION;
D O I
10.1117/12.982001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a high-energy laser, the thermal aberrations degrade the beam quality and reduce the laser's output power. Adaptive optics (AO) technique based on a stochastic parallel gradient (SPGD) algorithm can be used to compensate for the distortions in real time to clean up the laser beam. Such a beam clean-up system was simulated and experiments were conducted to study the optimization of the parameters of the gain coefficient and the amplitude of the perturbation. The results show that the convergence property of the SPGD algorithm is improved after the parameters being optimized.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Investigations of incoherent beam combining using stochastic parallel gradient descent with retroreflector target
    Henriksson, Markus
    Brannlund, Carl
    TECHNOLOGIES FOR OPTICAL COUNTERMEASURES XVI, 2019, 11161
  • [42] Telescope Alignment Method Using a Modified Stochastic Parallel Gradient Descent Algorithm
    Li, Min
    Liu, Xin
    Zhang, Junbo
    Xian, Hao
    PHOTONICS, 2024, 11 (11)
  • [43] Beam phase-distortion correction in a high power laser based on the stochastic parallel gradient descent technique
    Wang, D. E.
    Hu, D. X.
    Zhou, W.
    Deng, X. W.
    Wang, Y. C.
    Deng, W.
    Yuan, Q.
    Zhang, X.
    Huang, L.
    Li, T. H.
    Xue, Q.
    Yuan, H. Y.
    Peng, Z. T.
    Dai, W. J.
    Zhu, Q. H.
    Jing, F.
    LASER PHYSICS LETTERS, 2013, 10 (12)
  • [44] Multi-perturbation stochastic parallel gradient descent method for wavefront correction
    Wu, Kenan
    Sun, Yang
    Huai, Ying
    Jia, Shuqin
    Chen, Xi
    Jin, Yuqi
    OPTICS EXPRESS, 2015, 23 (03): : 2933 - 2944
  • [45] Modal decomposition of a fibre laser beam based on the push-broom stochastic parallel gradient descent algorithm
    Chen, Fan
    Zhao, Shubin
    Wang, Qiang
    Ma, Jun
    Lu, Qiang
    Wan, Jun
    Xie, Renwei
    Zhu, Rihong
    OPTICS COMMUNICATIONS, 2021, 481
  • [46] BACKPROPAGATION AND STOCHASTIC GRADIENT DESCENT METHOD
    AMARI, S
    NEUROCOMPUTING, 1993, 5 (4-5) : 185 - 196
  • [47] Estimation of reaction kinetic parameters based on modified stochastic gradient descent
    Tang L.-S.
    Chen W.-F.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2022, 36 (03): : 426 - 436
  • [48] Stochastic gradient descent for optimization for nuclear systems
    Austin Williams
    Noah Walton
    Austin Maryanski
    Sandra Bogetic
    Wes Hines
    Vladimir Sobes
    Scientific Reports, 13
  • [49] Ant colony optimization and stochastic gradient descent
    Meuleau, N
    Dorigo, M
    ARTIFICIAL LIFE, 2002, 8 (02) : 103 - 121
  • [50] Stochastic gradient descent for wind farm optimization
    Quick, Julian
    Rethore, Pierre-Elouan
    Pedersen, Mads Molgaard
    Rodrigues, Rafael Valotta
    Friis-Moller, Mikkel
    WIND ENERGY SCIENCE, 2023, 8 (08) : 1235 - 1250