Pathwise Uniqueness and Non-explosion Property of Skorohod SDEs with a Class of Non-Lipschitz Coefficients and Non-smooth Domains

被引:4
|
作者
Hino, Masanori [1 ]
Matsuura, Kouhei [2 ]
Yonezawa, Misaki [3 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[2] Univ Tsukuba, Inst Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, Japan
[3] Daiwa Secur Co Ltd, Chiyoda Ku, Tokyo 1006752, Japan
关键词
Skorohod SDE; Non-Lipschitz coefficient; Pathwise uniqueness; Non-explosion property; STOCHASTIC DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s10959-020-01036-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Here, we study stochastic differential equations with a reflecting boundary condition. We provide sufficient conditions for pathwise uniqueness and non-explosion property of solutions in a framework admitting non-Lipschitz continuous coefficients and non-smooth domains.
引用
收藏
页码:2166 / 2191
页数:26
相关论文
共 50 条
  • [31] A class of degenerate stochastic differential equations with non-Lipschitz coefficients
    Kumar, K. Suresh
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (03): : 443 - 454
  • [32] Fractional SPDEs with non-Lipschitz coefficients
    Boulanba, Lahcen
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2009, 17 (04) : 389 - 397
  • [33] THE MARTIN BOUNDARY IN NON-LIPSCHITZ DOMAINS
    BASS, RF
    BURDZY, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) : 361 - 378
  • [34] Coerciveness property for a class of non-smooth functionals
    Motreanu, D
    Motreanu, VV
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 1087 - 1093
  • [35] On the averaging principle for SDEs driven by G-Brownian motion with non-Lipschitz coefficients
    Wei Mao
    Bo Chen
    Surong You
    Advances in Difference Equations, 2021
  • [36] On the averaging principle for SDEs driven by G-Brownian motion with non-Lipschitz coefficients
    Mao, Wei
    Chen, Bo
    You, Surong
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [37] Strong averaging principle for two-time-scale SDEs with non-Lipschitz coefficients
    Xu, Jie
    Liu, Jicheng
    Miao, Yu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (01) : 116 - 140
  • [38] Approximation and Stability of Solutions of SDEs Driven by a Symmetric α Stable Process with Non-Lipschitz Coefficients
    Hashimoto, Hiroya
    SEMINAIRE DE PROBABILITES XLV, 2013, 2078 : 181 - 199
  • [39] Homeomorphism flows for SDEs driven by G-Brownian motion with non-Lipschitz coefficients
    Liu, Juanfang
    Miao, Yu
    Mu, Jianyong
    Xu, Jie
    STOCHASTICS AND DYNAMICS, 2021, 21 (02)
  • [40] An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients
    Chassagneux, Jean-Francois
    Jacquier, Antoine
    Mihaylov, Ivo
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2016, 7 (01): : 993 - 1021