Predictive simulation of non-steady-state transport of gases through rubbery polymer membranes

被引:11
|
作者
Soniat, Marielle [1 ,2 ]
Tesfaye, Meron [3 ,4 ]
Brooks, Daniel [5 ]
Merinov, Boris [5 ]
Goddard, William A., III [5 ]
Weber, Adam Z. [1 ,3 ]
Houle, Frances A. [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[5] CALTECH, Beckman Inst, Mat & Proc Simulat Ctr MSC, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Rubbery polymers; Reaction-diffusion modeling; Gas transport; MOLECULAR-DYNAMICS SIMULATIONS; MASS ACCOMMODATION; OXYGEN DIFFUSION; PDMS MEMBRANES; CO2; PERMEABILITY; LUMINESCENCE; ELECTROLYTE; PERMEATION; ADSORPTION;
D O I
10.1016/j.polymer.2017.11.055
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A multiscale, physically-based, reaction-diffusion kinetics model is developed for non-steady-state transport of simple gases through a rubbery polymer. Experimental data from the literature, new measurements of non-steady-state permeation and a molecular dynamics simulation of a gas-polymer sticking probability for a typical system are used to construct and validate the model framework. Using no adjustable parameters, the model successfully reproduces time-dependent experimental data for two distinct systems: (1) O-2 quenching of a phosphorescent dye embedded in poly(n-butyl(amino) thionylphosphazene), and (2) O-2, N-2, CH4 and CO2 transport through poly(dimethyl siloxane). The calculations show that in the pre-steady-state regime, permeation is only correctly described if the sorbed gas concentration in the polymer is dynamically determined by the rise in pressure. The framework is used to predict selectivity targets for two applications involving rubbery membranes: CO2 capture from air and blocking of methane cross-over in an aged solar fuels device. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 142
页数:18
相关论文
共 50 条
  • [21] An analytical solution for non-steady-state diffusion through thin films
    Mezin, A
    Lepage, J
    Abel, PB
    THIN SOLID FILMS, 1996, 272 (01) : 124 - 131
  • [22] Nonequilibrium and non-steady-state evolution of a shock state
    Ng, A
    Ao, T
    PHYSICAL REVIEW LETTERS, 2003, 91 (03)
  • [23] Simulation of nonlinear non-steady-state conduction: expansion on the branch modes.
    Neveu, A
    El-Khoury, K
    Flament, B
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 1999, 38 (04) : 289 - 304
  • [24] Simulation of Automobile Motion Including Non-steady-state Side Slip Phenomenon
    Sar, H.
    Renski, A.
    Pokorski, J.
    PROCEEDINGS OF THE 20TH INTERNATIONAL SCIENTIFIC CONFERENCE TRANSPORT MEANS 2016, 2016, : 5 - 8
  • [25] Non-steady-state modelling of membrane reactors with catalytically active membranes for use with liquid
    Garayhi, AR
    Flugge-Hamann, U
    Keil, FJ
    CHEMIE INGENIEUR TECHNIK, 1998, 70 (1-2) : 123 - 127
  • [26] NON-STEADY-STATE OPERATION OF CONTINUOUS REACTORS
    RENKEN, A
    CHEMIE INGENIEUR TECHNIK, 1982, 54 (06) : 571 - 580
  • [27] MATHEMATICAL ASPECTS OF NON-STEADY-STATE DIAGENESIS
    LASAGA, AC
    HOLLAND, HD
    GEOCHIMICA ET COSMOCHIMICA ACTA, 1976, 40 (03) : 257 - 266
  • [28] USE OF POTENTIOSTATS IN NON-STEADY-STATE MEASUREMENTS
    BROWN, OR
    ELECTROCHIMICA ACTA, 1968, 13 (03) : 317 - &
  • [29] Non-steady-state streaming potential in multilayer partially-hydrophobic diaphragms and membranes
    Yaroshchuk, AE
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2001, 195 (1-3) : 17 - 24
  • [30] Temporal full-colour tuning through non-steady-state upconversion
    Deng R.
    Qin F.
    Chen R.
    Huang W.
    Hong M.
    Liu X.
    Nature Nanotechnology, 2015, 10 (3) : 237 - 242