NEW FOURTH ORDER POSTPROCESSING TECHNIQUES FOR PLATE BENDING EIGENVALUES BY MORLEY ELEMENT

被引:0
|
作者
Ma, Limin [1 ]
Tian, Shudan [2 ,3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Peking Univ, LMAM, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2022年 / 44卷 / 04期
关键词
eigenvalue problem; Morley element; extrapolation method; a posterior error estimates; plate problem; HERRMANN-JOHNSON METHOD; CROUZEIX-RAVIART; NUMERICAL EIGENVALUES; APPROXIMATION; SUPERCONVERGENCE; EXPANSIONS; EXTRAPOLATION; EQUATIONS; BOUNDS;
D O I
10.1137/21M1446642
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze the extrapolation method and asymptotically exact a posterior error estimate for eigenvalues of the Morley element. We establish an asymptotic expansion of eigenvalues and prove an optimal result for this expansion and the corresponding extrapolation method. We also design an asymptotically exact a posterior error estimate and propose new approximate eigenvalues with higher accuracy by utilizing this a posteriori error estimate. Finally, several numerical experiments are considered to confirm the theoretical results and compare the performance of the proposed methods.
引用
收藏
页码:B910 / B937
页数:28
相关论文
共 50 条