Efficient mixed-spectrum estimation with applications to target feature extraction

被引:419
|
作者
Li, J [1 ]
Stoica, P [1 ]
机构
[1] UPPSALA UNIV,DEPT TECHNOL,SYST & CONTROL GRP,UPPSALA,SWEDEN
基金
美国国家科学基金会;
关键词
D O I
10.1109/78.485924
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a decoupled parameter estimation (DPE) algorithm for estimating sinusoidal parameters from both 1-D and 2-D data sequences corrupted by autoregressive (AR) noise. in the first step of the DPE algorithm, we use a relaxation (RELAX) algorithm that requires simple fast Fourier transforms (FFT's) to obtain the estimates of the sinusoidal parameters. We describe how the RELAX algorithm may be used to extract radar target features from both 1-D and 2-D data sequences. In the second step of the DPE algorithm, a linear least-squares approach is used to estimate the AR noise parameters. The DPE algorithm is both conceptually and computationally simple. The algorithm not only provides excellent estimation performance under the model assumptions, in which case the estimates obtained with the DPE algorithm are asymptotically statistically efficient, but is also robust to mismodeling errors.
引用
收藏
页码:281 / 295
页数:15
相关论文
共 50 条
  • [21] A method of line spectrum extraction based on target radiated spectrum feature and its post-processing
    DAI Wenshu
    ZHENG Enming
    BAO Kaikai
    JournalofSystemsEngineeringandElectronics, 2021, 32 (06) : 1381 - 1393
  • [22] FUEL-MANAGEMENT AND REACTOR-PHYSICS STUDY OF THE FAST MIXED-SPECTRUM REACTOR CONCEPT
    FISCHER, GJ
    CERBONE, RJ
    SHENOY, S
    DURSTON, C
    LUDEWIG, H
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1979, 32 (JUN): : 792 - 794
  • [23] Robust speech feature extraction using the Hilbert transform spectrum estimation method
    Zhao H.
    Liu H.
    Zhao K.
    Yang Y.
    International Journal of Digital Content Technology and its Applications, 2011, 5 (12) : 85 - 95
  • [24] Efficient algorithm for three-dimensional target feature extraction via CLSAR
    Su, Z
    Peng, Y
    Wang, X
    ELECTRONICS LETTERS, 2004, 40 (15) : 965 - 966
  • [25] Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum
    Morris, JS
    Coombes, KR
    Koomen, J
    Baggerly, KA
    Kobayashi, R
    BIOINFORMATICS, 2005, 21 (09) : 1764 - 1775
  • [26] A Novel and Efficient Feature Extraction Method for Deep Learning Based Continuous Estimation
    Ma, Chenfei
    Guo, Weiyu
    Zhang, Hang
    Samuel, Oluwarotimi Williams
    Ji, Xiaopeng
    Xu, Lisheng
    Li, Guanglin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04): : 7341 - 7348
  • [27] Unsupervised Blind Quality Estimation of NSS Images using Efficient Feature Extraction
    Gopika, S.
    Malathi, D.
    Dorathi, J. D.
    SECOND NATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE (NCCI 2018), 2018, 1142
  • [29] Feature extraction of precession target based on Doppler profile sequences by maximum likelihood estimation
    Wang, Ning
    Mo, Di
    Song, Ziqi
    Wang, Ran
    Li, Guangzuo
    Wu, Yirong
    ELECTRONICS LETTERS, 2019, 55 (09) : 554 - 555
  • [30] Simultaneous HRR feature extraction and Doppler shift estimation of moving target with rigid bodies
    Bi, ZQ
    Wu, RB
    Li, J
    Williams, R
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY VI, 1999, 3721 : 425 - 436