Evaluation of finite volume solutions for radiative heat transfer in a closed cavity solar receiver for high temperature solar thermal processes

被引:26
|
作者
Martinek, Janna [1 ]
Weimer, Alan W. [1 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
关键词
Radiation heat transfer; Solar receiver; Finite volume method; Monte Carlo method; STEAM-GASIFICATION; FALSE SCATTERING; MONTE-CARLO; CARBONACEOUS MATERIALS; HYDROGEN-PRODUCTION; CHEMICAL REACTOR; DESIGN; MODEL; COMPUTATION; ENCLOSURES;
D O I
10.1016/j.ijheatmasstransfer.2012.11.065
中图分类号
O414.1 [热力学];
学科分类号
摘要
High temperature solar-thermal reaction processes can be carried out within closed-cavity solar receivers in which concentrated solar energy enters the cavity through a small aperture or window and is absorbed either directly by reactants or by tubes containing reactant mixtures. Accurate modeling of radiation transfer phenomena in the solar receiver is critical for predicting receiver performance and improving receiver design. The accuracy of the finite volume (FV) method is evaluated in comparison to Monte Carlo (MC) techniques for both the concentrated solar energy and the energy emitted by heated surfaces in a receiver with either absorbing/diffusely emitting or specularly reflective cavity walls. Models are solved for two-dimensional slices of each of two receiver configurations with four spatial grids ranging from 2300 to 133,000 mesh elements, and three different angular grids. Solar radiative energy is described by a simplified uniform spatial profile at the receiver aperture that is either collimated or diffuse. Quantitatively accurate FV solutions for the solar energy either require highly refined angular and spatial grids, or are not possible on the mesh sizes investigated in this study. FV solutions for the emitted energy are sufficient even on coarse angular and spatial grids. FV solutions are least accurate when the cavity is highly specularly reflective or the absorber area is minimized, and tend to improve as the character of the incident solar energy changes from collimated to diffuse. Based on these results, a hybrid MC/FV strategy is proposed for use in combined radiation and convection/conduction heat transfer models. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:585 / 596
页数:12
相关论文
共 50 条
  • [1] HEAT TRANSFER IN A SOLAR CAVITY RECEIVER: DESIGN CONSIDERATIONS
    Hathaway, Brandon J.
    Lipinski, Wojciech
    Davidson, Jane H.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2012, 62 (05) : 445 - 461
  • [2] Development and heat transfer analysis of high temperature heat pipe solar receiver
    Xu, Hui
    Zhang, Hong
    Bai, Tong
    Ding, Li
    Zhuang, Jun
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2010, 31 (12): : 1585 - 1590
  • [3] NUMERICAL INVESTIGATION ON CONVECTIVE HEAT TRANSFER IN HIGH TEMPERATURE SOLAR RECEIVER
    Manca, Oronzio
    Minea, Alina Adriana
    Nardini, Sergio
    Tamburrino, Salvatore
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2011, 10 (10): : 1467 - 1475
  • [4] Thermal analysis of cavity receiver for solar energy heat collector
    Zhang, Li-Ying
    Zhai, Hui
    Dai, Yan-Jun
    Wang, Ru-Zhu
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2008, 29 (09): : 1453 - 1457
  • [5] Effects of surface optical and radiative properties on the thermal performance of a solar cavity receiver
    Fang, Jiabin
    Tu, Nan
    Wei, Jinjia
    Du, Xuancheng
    SOLAR ENERGY, 2018, 171 : 157 - 170
  • [6] MATHEMATICAL MODELING OF A RADIATIVE HEAT TRANSFER PROCESS IN THE SYSTEM OF THE SOLAR ENERGY CONCENTRATOR-RECEIVER FOR SPACE HIGH-TEMPERATURE SOLAR POWER PLANT
    Leonov, Victor V.
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 7: NATURAL CONVECTION, NATURAL/MIXED CONVECTION, NUCLEAR, PHASE CHANGE MATERIALS, SOLAR, 2010, : 533 - 538
  • [7] Numerical investigation on heat transfer and thermoelastic stress in a solar cavity receiver
    Fang, Jiabin
    Zhang, Canghong
    Tu, Nan
    Wei, Jinjia
    Qaisrani, Mumtaz A.
    Wei, Junyao
    Zhou, Zhi
    Xiao, Bin
    APPLIED THERMAL ENGINEERING, 2021, 198
  • [8] NUMERICAL SIMULATION OF HIGH TEMPERATURE SOLAR RECEIVER AND THERMAL RECEIVER FOR SOLAR MICRO GAS TURBINE
    Matsubara, Koji
    Isojima, Sho
    Nakakura, Mitsuho
    Yamada, Yuji
    Kawagoe, Shota
    PROCEEDINGS OF THE ASME POWER CONFERENCE JOINT WITH ICOPE-17, 2017, VOL 2, 2017,
  • [9] Experimental and numerical analysis of a helical coil solar cavity receiver: Thermal oil as the heat transfer fluid
    Kumar, Arun
    Shukla, S. K.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2019, 16 (09) : 716 - 732
  • [10] EVALUATION OF THERMAL EFFICIENCY AND COST OF HIGH-TEMPERATURE SOLAR HEAT FROM CENTRAL RECEIVER SYSTEMS TO USE IN HYDROGEN PRODUCING THERMOCHEMICAL PROCESSES
    HAMMACHE, A
    BILGEN, E
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1988, 13 (09) : 539 - 546