Parametric and non-parametric gradient matching for network inference: a comparison

被引:3
|
作者
Dony, Leander [1 ,2 ,3 ]
He, Fei [1 ,4 ]
Stumpf, Michael P. H. [1 ,5 ,6 ]
机构
[1] Imperial Coll London, Dept Life Sci, Ctr Integrat Syst Biol & Bioinformat, London SW7 2AZ, England
[2] Helmholtz Ctr Munich, German Res Ctr Environm Hlth, Inst Computat Biol, D-85764 Neuherberg, Germany
[3] Max Planck Inst Psychiat, Kraepelinstr 2-10, D-80804 Munich, Germany
[4] Coventry Univ, Sch Comp Elect & Math, Coventry CV1 2JH, W Midlands, England
[5] Univ Melbourne, Sch BioSci, Melbourne Integrat Genom, Melbourne, Vic 3010, Australia
[6] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
英国生物技术与生命科学研究理事会;
关键词
Systems biology; Gradient matching; Gene regulation; Network inference; REGULATORY NETWORKS; SYSTEMS; MODELS;
D O I
10.1186/s12859-018-2590-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundReverse engineering of gene regulatory networks from time series gene-expression data is a challenging problem, not only because of the vast sets of candidate interactions but also due to the stochastic nature of gene expression. We limit our analysis to nonlinear differential equation based inference methods. In order to avoid the computational cost of large-scale simulations, a two-step Gaussian process interpolation based gradient matching approach has been proposed to solve differential equations approximately.ResultsWe apply a gradient matching inference approach to a large number of candidate models, including parametric differential equations or their corresponding non-parametric representations, we evaluate the network inference performance under various settings for different inference objectives. We use model averaging, based on the Bayesian Information Criterion (BIC), to combine the different inferences. The performance of different inference approaches is evaluated using area under the precision-recall curves.ConclusionsWe found that parametric methods can provide comparable, and often improved inference compared to non-parametric methods; the latter, however, require no kinetic information and are computationally more efficient.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] On Parametric (and Non-Parametric) Variation
    Smith, Neil
    Law, Ann
    BIOLINGUISTICS, 2009, 3 (04): : 332 - 343
  • [22] PARAMETRIC AND NON-PARAMETRIC MINIMA
    ANZELLOTTI, G
    MANUSCRIPTA MATHEMATICA, 1984, 48 (1-3) : 103 - 115
  • [23] Parametric or Non-parametric: Skewness to Test Normality for Mean Comparison
    Orcan, Fatih
    INTERNATIONAL JOURNAL OF ASSESSMENT TOOLS IN EDUCATION, 2020, 7 (02): : 255 - 265
  • [24] Experimental comparison of parametric, non-parametric, and hybrid multigroup classification
    Pai, Dinesh R.
    Lawrence, Kenneth D.
    Klimberg, Ronald K.
    Lawrence, Sheila M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 8593 - 8603
  • [25] Comparison of Parametric and Non-Parametric Population Modelling of Sport Performances
    Bermon, Stephane
    Metelkina, Asya
    Rendas, Maria Joao
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 301 - 305
  • [26] Comparison of Parametric and Non-Parametric Approaches for Vehicle Speed Prediction
    Lefevre, Stephanie
    Sun, Chao
    Bajcsy, Ruzena
    Laugier, Christian
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 3494 - 3499
  • [27] NON-PARAMETRIC MULTIPLE COMPARISON TECHNIQUES
    MCDONALD, BJ
    THOMPSON, WA
    TECHNOMETRICS, 1965, 7 (02) : 274 - &
  • [28] Comparison of parametric and non-parametric Bayesian inference for fusing sensory estimates in physiological time-series analysis
    Zhu, Tingting
    Javed, Hamza
    Clifton, David A.
    HEALTHCARE TECHNOLOGY LETTERS, 2021, 8 (02) : 25 - 30
  • [29] Simulation-based inference for non-parametric statistical comparison of biomolecule dynamics
    Verdier, Hippolyte L.
    Laurent, Francois
    Casse, Alhassan L.
    Vestergaard, Christian L.
    Specht, Christian G. L.
    Masson, Jean-Baptiste
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (02)