Parametric and non-parametric gradient matching for network inference: a comparison

被引:3
|
作者
Dony, Leander [1 ,2 ,3 ]
He, Fei [1 ,4 ]
Stumpf, Michael P. H. [1 ,5 ,6 ]
机构
[1] Imperial Coll London, Dept Life Sci, Ctr Integrat Syst Biol & Bioinformat, London SW7 2AZ, England
[2] Helmholtz Ctr Munich, German Res Ctr Environm Hlth, Inst Computat Biol, D-85764 Neuherberg, Germany
[3] Max Planck Inst Psychiat, Kraepelinstr 2-10, D-80804 Munich, Germany
[4] Coventry Univ, Sch Comp Elect & Math, Coventry CV1 2JH, W Midlands, England
[5] Univ Melbourne, Sch BioSci, Melbourne Integrat Genom, Melbourne, Vic 3010, Australia
[6] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
英国生物技术与生命科学研究理事会;
关键词
Systems biology; Gradient matching; Gene regulation; Network inference; REGULATORY NETWORKS; SYSTEMS; MODELS;
D O I
10.1186/s12859-018-2590-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundReverse engineering of gene regulatory networks from time series gene-expression data is a challenging problem, not only because of the vast sets of candidate interactions but also due to the stochastic nature of gene expression. We limit our analysis to nonlinear differential equation based inference methods. In order to avoid the computational cost of large-scale simulations, a two-step Gaussian process interpolation based gradient matching approach has been proposed to solve differential equations approximately.ResultsWe apply a gradient matching inference approach to a large number of candidate models, including parametric differential equations or their corresponding non-parametric representations, we evaluate the network inference performance under various settings for different inference objectives. We use model averaging, based on the Bayesian Information Criterion (BIC), to combine the different inferences. The performance of different inference approaches is evaluated using area under the precision-recall curves.ConclusionsWe found that parametric methods can provide comparable, and often improved inference compared to non-parametric methods; the latter, however, require no kinetic information and are computationally more efficient.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Parametric and non-parametric gradient matching for network inference: a comparison
    Leander Dony
    Fei He
    Michael P. H. Stumpf
    BMC Bioinformatics, 20
  • [2] Non-parametric inference on the number of equilibria
    Kasy, Maximilian
    ECONOMETRICS JOURNAL, 2015, 18 (01): : 1 - 39
  • [3] Non-Parametric Inference of Relational Dependence
    Ahsan, Ragib
    Fatemi, Zahra
    Arbour, David
    Zheleva, Elena
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 54 - 63
  • [4] Non-parametric inference for density modes
    Genovese, Christopher R.
    Perone-Pacifico, Marco
    Verdinelli, Isabella
    Wasserman, Larry
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 99 - 126
  • [5] Statistical inference in the non-parametric case
    Scheffe, H
    ANNALS OF MATHEMATICAL STATISTICS, 1943, 14 : 305 - 332
  • [6] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [7] A comparison of parametric and non-parametric methods for modelling a coregionalization
    Bishop, T. F. A.
    Lark, R. M.
    GEODERMA, 2008, 148 (01) : 13 - 24
  • [8] Comparison of ROC curves: Parametric and non-parametric techniques
    Halpern, EJ
    RADIOLOGY, 2001, 221 : 426 - 426
  • [9] Comparison of reliability techniques of parametric and non-parametric method
    Kalaiselvan, C.
    Rao, L. Bhaskara
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2016, 19 (02): : 691 - 699
  • [10] A COMPARISON OF PARAMETRIC AND NON-PARAMETRIC METHODS FOR RUNOFF FORECASTING
    GALEATI, G
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1990, 35 (01): : 79 - 94