Cluster algebras and Weil-Petersson forms

被引:109
|
作者
Gekhtman, M [1 ]
Shapiro, M
Vainshtein, A
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Univ Haifa, Dept Math & Comp Sci, IL-31905 Haifa, Israel
关键词
D O I
10.1215/S0012-7094-04-12723-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In our paper [GSV], we discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper, we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmuller space, in which case the above form coincides with the classical Weil-Petersson. symplectic form.
引用
收藏
页码:291 / 311
页数:21
相关论文
共 50 条
  • [21] Thermodynamics, dimension and the Weil-Petersson metric
    McMullen, Curtis T.
    INVENTIONES MATHEMATICAE, 2008, 173 (02) : 365 - 425
  • [22] Limit Sets of Weil-Petersson Geodesics
    Brock, Jeffrey
    Leininger, Christopher
    Modami, Babak
    Rafi, Kasra
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (24) : 7604 - 7658
  • [23] Uniform bounds for Weil-Petersson curvatures
    Wolf, Michael
    Wu, Yunhui
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 : 1041 - 1076
  • [24] The Weil-Petersson current on Douady spaces
    Axelsson, Reynir
    Schumacher, Georg
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (04) : 638 - 656
  • [25] Weil-Petersson volumes and cone surfaces
    Do, Norman
    Norbury, Paul
    GEOMETRIAE DEDICATA, 2009, 141 (01) : 93 - 107
  • [26] The Weil-Petersson geodesic flow is ergodic
    Burns, K.
    Masur, H.
    Wilkinson, A.
    ANNALS OF MATHEMATICS, 2012, 175 (02) : 835 - 908
  • [27] INFINITESIMAL CONJUGACIES AND WEIL-PETERSSON METRIC
    FATHI, A
    FLAMINIO, L
    ANNALES DE L INSTITUT FOURIER, 1993, 43 (01) : 279 - 299
  • [28] Weil-Petersson geometry of the universal Teichmuller space
    Takhtajan, LA
    Teo, LP
    Infinite Dimensional Algebras and Quantum Integrable Systems, 2005, 237 : 225 - 233
  • [29] JT gravity and the asymptotic Weil-Petersson volume
    Kimura, Yusuke
    PHYSICS LETTERS B, 2020, 811
  • [30] Positivity of Weil-Petersson currents on canonical models
    Guo, Bin
    Song, Jian
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 1045 - 1059